期刊文献+

SDN架构下数据流量调度算法的设计 被引量:4

Design of Data Flow Scheduling Algorithm Under SDN Architecture
下载PDF
导出
摘要 目前云技术被广泛应用于数据中心网络(DCN),为确保DCN服务质量(QoS),等价多路径路由(ECMP)算法和动态负载均衡(DLB)算法被作为解决方案。然而这些算法仅能获得局部优化效果,将其应用在DCN重载环境下时,得到的传输时延和带宽利用率等指标不尽如人意。文章针对这些算法的局限性,从全局优化的角度提出一种软件定义网络(SDN)架构下的胖树网络数据流量载荷均衡调度算法。该算法通过Ryu控制器监视全局实时参量来评估SDN节点和链路载荷情况,选出最符合流量载荷需求的最优转发路径。实验表明,所提算法在改善DCN服务性能方面较等价多路径路由算法和动态负载均衡算法有显著提升。 Recently,cloud technology is widely used in Data Center Network(DCN).In order to ensure Quality of Service(QoS)in DCN,Equal Cost Multipath Routing(ECMP)algorithms and Dynamic Load Balancing(DLB)algorithms are employed as solutions.However,these algorithms only obtain local optimization results.In particular,the transmission delay and bandwidth utilization are not satisfactory when these algorithms are applied in the DCN overloaded environment.Considering the limitations of these algorithms,this paper proposes a load balancing scheduling mechanism for fat tree network data traffic under Software Defined Network(SDN)architecture from the perspective of global optimization.The mechanism evaluates the SDN node and link load by monitoring the global real-time parameters through the Ryu controller,and selecting the optimal forwarding path which meets the demand of traffic load.Experiments show that the scheduling mechanism proposed in this paper has significantly improved the performance of DCN services compared with the ECMP/DLB algorithm.
作者 许文庆 余庚 XU Wen-qing;YU Geng(Fuzhou Institute of Technology, Fuzhou 350506, China;Guomai Information College, Fujian University of Technology, Fuzhou 350014, China)
出处 《光通信研究》 北大核心 2018年第3期5-8,20,共5页 Study on Optical Communications
基金 福建省教育厅中青年教师教育科研项目资助(JAT170802 JAT160623)
关键词 软件定义网络 数据中心网络 评估 均衡 仿真 SDN DCN evaluation balance simulation
  • 相关文献

参考文献10

二级参考文献69

  • 1马炫.求解k条最优路径问题的遗传算法[J].计算机工程与应用,2006,42(12):100-101. 被引量:29
  • 2林洁,杨立才,吴晓晴,叶杨.求解动态路径诱导K路最短问题的人工免疫优化方法[J].山东大学学报(工学版),2007,37(2):103-108. 被引量:6
  • 3Androutsopoulos K N, Zografos K G. Solving the k shortest path problem with time windows in a time varying network [J]. Operations Research Letters, 2008, 36 (6): 692-695.
  • 4Hershberger J, Maxel M, Sur S. Finding the K shortest simple paths: A new algorithm and its implementation [J]. ACM Transactions on Algorithms, 2007, 3 (4): 45.
  • 5Paluch S. A multilable algorithm for k shortest paths problem [J]. Komunikacie, 2009, 11 (3): 11-14.
  • 6Aljazzar H, Leue S. K *: A directed on-the-fly algorithm foe finding the k shortest paths [R]. Technical Report soft-08-03, Chair for Software Engineering, University of Konstanz, 2008.
  • 7Roditty L. On the k shortest simple paths problem in weighted directed graphs [J]. SIAM Journal on Computing, 2010, 39 (6): 2363-2376.
  • 8MARTIN C, MICHAEL J, SCOTT S. Ethane: Taking control of the enterprise[C]//SIGCOMM'07. Kyoto, Japan: [s.n.], 2007.
  • 9MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al. OpenFlow: Enabling innovation in campus networks[C]// ACM SIGCOMM Computer Communication Review. Seattle: [s.n.], 2008, 38(2): 69-74.
  • 10CANINI M, KOSTI'C D, REXFORD J, et al. Automating the testing of OpenFlow applications[C]/fI'he 1st International Workshop on Rigorous Protocol Engineering (WRiPE). [S.I.]: [s.n.], 2011.

共引文献98

同被引文献44

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部