摘要
利用第一种意义上的(α,m)凸函数与其导函数的关系,证明几个与第一种意义上的(α,m)凸函数有关的单调函数,建立几个Hermite-Hadamard型不等式.通过建立涉及一阶导数的恒等式,利用(α,m)凸函数的定义,针对其导数的绝对值为(α,m)凸函数的可微函数,建立Hermite-Hadamard型不等式.
Using the relationship between( α,m)-convex functions in the first sense and its derivative functions,we prove several monotone functions related to( α,m)-convex functions in the first sense and establish several Hermite-Hadamard type inequalities. By establishing the identity involving the first derivative and using the definition of( α,m)-convex functions,Hermite-Hadamard type inequalities are obtained for differentiable functions whose absolute value of the derivative are( α,m)-convex functions.
作者
时统业
SHI Tongye(PLA Naval Command College, Nanjing, Jiangsu, 211800, P.R.China)
出处
《广东第二师范学院学报》
2018年第3期32-37,共6页
Journal of Guangdong University of Education