期刊文献+

一种超体积准则多目标遗传算法的螺旋桨叶片优化方法 被引量:2

An optimization method of propeller blade based on the hypervolume criterion multi-objective genetic algorithm
下载PDF
导出
摘要 为改善螺旋桨叶片敞水效率,用结合超体积准则的多目标遗传算法优化螺旋桨桨型设计.优化过程中,桨叶形状用B样条曲线拟合,利用面元法建立桨型性能模型.将计算螺旋桨升力和阻力转化为降低阻升比、桨型面积差和压力方差三个优化目标,得到优化后的螺旋桨剖面形状,并将优化前后的螺旋桨进行流体分析.结果表明,超体积准则结合多目标遗传算法进行螺旋桨叶片优化是有效的.优化后的桨型在面积差变化较小的情况下三个目标均有明显改进,螺旋桨水动力性能达到预期目标,敞水效率提升12%. In order to improve the open water efficiency of the propeller,the propeller type is optimized with the hypervolume criterion multi-objective genetic algorithm. In the optimization process,the blade shape is curve fitted with B-spline,and the propeller type performance model is established with surface panel method. The lift and drag force of the propeller is transformed into three optimization objectives: reducing the drag lift ratio,the propeller area difference and the pressure variance. With the proposed method,the propeller profile after optimization is obtained. Then the propeller before and after optimization are analyzed with fluid analyzing method. The calculation results indicate that the hyper volume criterion multi-objective genetic algorithm is effective in the propeller blade optimization,the three objectives of the optimized propeller type have been improved obviously,the hydrodynamic performance of the propeller reaches the anticipated goal,and the open water efficiency increases 12%.
作者 潘志榕 朱光宇 伊德景 PAN Zhirong;ZHU Guangyu;YI Dejing(School of Mechanical Engineering and Automation,Fuzhou University, Fuzhou,Fujian 350116, China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2018年第3期372-378,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省科技厅科技计划重点资助项目(2016H0015)
关键词 超体积 遗传算法 螺旋桨 多目标 hypervolume genetic algorithm propeller multi-objective
  • 相关文献

参考文献2

二级参考文献26

  • 1郑金华,史忠植,谢勇.基于聚类的快速多目标遗传算法[J].计算机研究与发展,2004,41(7):1081-1087. 被引量:14
  • 2夏泰淳.设计导管螺旋桨中的几个问题[J].渔业机械仪器,1986,13(6):24-26. 被引量:2
  • 3Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ [J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 4Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm, TIK-Report 103 [R]. Zurich: Swiss Federal Institute of Technology (ETH), 2001.
  • 5Knowles J, Corne D. Approximating the non-dominated front using the Pareto archive evolutionary strategy [J]. Evolutionary Computation, 2000, 8(2): 149-172.
  • 6Corne D, Knowles J, Oates M. The Pareto envelope-based selection algorithm for multiobiective optimization [C] //Proc of the Parallel Problem Solving from Nature VI Conference (PPSN'VI). Berlin: Springer, 2000:839-848.
  • 7Zitzler E, Thiele L, Laumanns M, et al. Performance assessment of multiobjeetive optimizers: An analysis and review[J].IEEE Trans on Evolutionary Computation,2003, 7(2): 117-132.
  • 8Fleischer M. The measure of Pareto optima: Applications to multiobjective metaheuristics[G] //LNCS 2632 : Proc of the 2nd Int Conf on Evolutionary Multi objective Optimization 2003 (EMO2003). Berlin: Springcr, 2003:519-533.
  • 9Knowles J, Corne D. Properties of an adaptive archiving algorithm for storing nondominated vectors[J].IEEE Trans on Evolutionary Computation, 2003, 3(2) :100-116.
  • 10Knowles J, Corne D, Fleischer M. Bounded archiving using the lebesgue measure [C]//Proc of the 1st IEEE Congress on Evolutionary Computation (CEC 2003). Piscataway: IEEE Service Center, 2003:2490-2497.

共引文献19

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部