期刊文献+

波纹通道内过渡领域流动特性的数值研究 被引量:1

Numerical Study on Gas Flow in the Transition Regime in a Wavy Microchannel
原文传递
导出
摘要 本文基于离散速度方向模型,数值研究了过渡领域内气体在正弦波纹通道中的流动特性。首先,对模型的控制方程进行了坐标转换,提出了分子在曲边边界上的反射处理方法,将原模型计算范围拓展到了不规则区域。基于此,采用结构化网格和二阶迎风格式对正弦波纹通道内处于过渡领域的气体流动进行了数值研究。结果表明,与连续介质领域和滑移领域不同,过渡领域内通道截面最大速度在Kn=1附近出现极小值;随着Kn数的增加,壁面滑移速度随之增加,而摩擦常数随之降低;此外,通道的渐扩过程滑移速度以及摩擦常数均降低,渐缩过程与此相反。 The characteristics of gas flow in the transition regime in a wavy microchannel were investigated numerically based on the Discrete Velocity Direction model in the paper. A plane coordinate transformation was applied to the governing equations, and a method to describe the reflection of discrete molecules on curved wall boundary was proposed. By this method, the Discrete Velocity Direction model has been extended to the irregular regions. Next, the gas flows in a wavy microchannel was numerically calculated using the second order upwind scheme based on structured grids. The results show that there is a minimum of velocity along the centerline at around Kn=1,which is very different from the phenomenon in the continuum and slip regimes. With the increase of Kn, the slip velocity increases and the constant coefficient of friction decreases. In addition, both the slip velocity and the constant coefficient decreases in the expended section, on the contrary, they increase in the contraction section.
作者 陆国敬 张震宇 李敬 徐建中 LU Guo-Jing;ZHANG Zhen-Yu;LI Jing;XU Jian-Zhong(Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100190, China;Key Laboratory of Light-duty Gas-turbine, Chinese Academy of Sciences, Beijing 100190, China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第7期1430-1435,共6页 Journal of Engineering Thermophysics
基金 国家重点基础研究发展计划(973)(No.2014CB239601)
关键词 过渡领域 离散速度方向模型 边界条件 正弦通道 transition regime discrete velocity direction model boundary condition wavy channels
  • 相关文献

参考文献1

二级参考文献9

  • 1S Chapman, T G Cowling. The Mathematical Theory of Non-Uniform Gases [M]. Beijing: Science Press, 1985.
  • 2F Sharipov, V Seleznev. Data on Internal Rarefied Gas Flows [J]. J Phys Chem Ref Data, 1998, 27:657 706.
  • 3Ching Shen. Rarefied Gas Dynamics [M]. Beijing: Na- tional Defense Industry Press, 2003.
  • 4J E Broadwell. Study of Rarefied Shear Flow by the Dis- crete Velocity Method [J]. Journal of Fluid Mechanics, 1964, 19(3): 401-414.
  • 5J E Broadwell. Shock Structure in Simple Discrete Veloc- ity Gas [J]. The Physics of Fluids, 1964, 7:1244 1247.
  • 6M Kogan. Rarefied Gas Dynamics [M]. New York: Plenum Press, 1969.
  • 7Zhenyu ZHANG, Jianzhong XU, Zhiguo QI, et al. A Dis- crete Velocity Direction Model for the Boltzmann Equa- tion and Applications to Micro Gas Flows [J]. Journal of Computational Physics, 2008, 227:5256-5271.
  • 8Sone Y, Takata S, Ohwada the Plane Couette Flow of a T. Numerical Analysis of Rarefied Gas on the Basis of the Linearized Boltzmann Equation for Hard-Sphere Molecules [J]. Eur J Meeh B/Fuild, 1990, 9(3): 273-288.
  • 9Jianzheng JIANG, Jing FAN, Ching SHEN. Statistical Simulation of Micro-Cavity Flows [C]//Rarefied Gas Dy- namics: 23rd International Symposium. American Insti- tute of Physics, 2003:784 791.

共引文献2

同被引文献14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部