期刊文献+

液滴撞击超疏水碳纳米管阵列表面的行为研究 被引量:3

The Characteristics Study of Droplet Impingement on Superhydrophobic Carbon Nanotube Arrays
原文传递
导出
摘要 实验研究了不同韦伯数(We)时液滴碰撞碳纳米管阵列表面的动态过程行为,并借助改进的水平集方法对液滴碰撞过程进行了数值模拟。模拟过程中,分别引入了接触角动态变化的Kistler模型和Blake模型,并就液滴铺展因子和顶点高度等方面将模拟与实验结果进行了对比分析。结果表明:在We=1.4~110范围内液滴碰撞都经历了相似的铺展-收缩-弹跳过程,不同We时模拟和实验结果都比较接近;在液滴铺展阶段,依据Kistler模型的模拟结果与实验值更接近,而在收缩阶段,依据Blake模型的模拟结果与实验值更加吻合.综合考虑后发现Blake模型与实验值的偏差较Kistler模型在整体上更小,细节吻合较好,验证了模型的可靠性。 The impact characteristics of water droplet on superhydrophobic carbon nanotube(CNT)arrays have been experimently studied at different Weber( We) numbers. Also, a numerical simulation was performed to investigate the droplet impingement based on an improved level-set method in conjunction with two dynamic contact angle models(namely Kistler model and Blake model). The experimental and numerical results were compared and showed in an acceptable agreement during the whole spreading-receding-bounding process at the Weber number range of 1.4 to 110. In the droplet spreading stage, the numerical results from Kistler model were closer to the experimental values, while Blake model was preferable in the receding stage. The Blake model is a better choice as compared with the Kistler model after comprehensive consideration, and the numerical dynamic evolution process of droplet impact based on the Blake model is quite close to the experimental results on the whole, which verifies the reliability of this model.
作者 杨舒生 屈健 杨学贵 YANG Shu-Sheng;QU Jian;YANG Xue-Gui(School of Energy and Power Engineering, Jiangsu University, Zhenjiang, diangsu 212013, China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第7期1549-1556,共8页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.51576091)
关键词 碳纳米管阵列 超疏水表面 液滴碰撞 动态接触角 数值模拟 carbon nanotube arrays superhydrophobic surface droplet impingement dynamic contact angle numerical simulation
  • 相关文献

参考文献4

二级参考文献44

  • 1王宏,廖强,朱恂.梯度表面能材料上液滴运动机理[J].化工学报,2007,58(9):2313-2320. 被引量:10
  • 2Pan K L. Breakup of a droplet at high velocity impacting a solid surface[J].Exp. Fluids, 2010, 48;143- 156.
  • 3Pan K L. Binary droplet collision at high Weber number[J]. Phys. Rev. E: Star. Phys. , Plasmas, Fluids, 2009, 80 (3): 036301.
  • 4Kannan R, Sivakumar D. Droplet impact process on a hydrophobic grooved surface [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008, 317: 694-704.
  • 5Manfredo G, Giorgio S. Experimental analysis on the shape and evaporation of water drops on high effusivity, microfinned surfaces [J]. Exp. Therm. Fluid Sci. 2010, 34: 93-103.
  • 6Mao T, Kulum D C S, Tran H. Spread and rebound of liquid drops upon impact on flat surface [J]. AIChE J. , 1997, 43:2169-2179.
  • 7Prashant R Gunjal, Vivek V Ranade, Raghunath V Chaudhari. Dynamics of drop impact on solid surface: experiments and VOF simulations [J]. AIChE J. , 2005. 51:59-78.
  • 8Chen R H, Wang H W. Effects of tangential speed on low- normal-speed liquid drop impact on a wettable solid surface [J]. Experimentsin Fluids, 2005, 39:754-760.
  • 9Bussmann M, Mostaghimi J, Chandra S. On a three dimensional volume tracking model of droplet impact [J]. Physics of Fluids, 1999, 11:1406 1417.
  • 10Kim Eunjeong, Baek Jehyun. Numerical study of the parameters governing the impact dynamics of yield-stress fluid droplets on a solid surface [J]. Journal of NonNewtonian Fluid Mechanics, 2010, 173/174:62-71.

共引文献47

同被引文献31

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部