期刊文献+

近阈值电压下可容错的末级缓存结构设计

Fault-tolerant Last Level Cache Architecture Design at Near-threshold Voltage
下载PDF
导出
摘要 近阈值电压技术通过降低晶体管的电源电压来降低芯片能耗和提升能效。但是,近阈值电压技术会在Cache中引起大量位错误,严重影响末级缓存的功能。针对近阈值电压下超过1%的位错误率造成的Cache故障问题,该文提出一种基于传统6T SRAM单元的可容错的末级缓存结构(FTLLC)。该策略对缓存条目中的错误进行了低错纠正和多错压缩,提高了Cache中数据保存的可靠性。为了验证FTLLC的有效性,该文在gem5中实现了该结构,并运行了SPEC CPU2006测试集进行仿真实验。结果表明,对于650 m V电压下65 nm工艺的末级缓存,FTLLC与Concertina压缩机制相比在4-Byte粒度下末级缓存可用容量增加了24.9%,性能提高了7.2%,末级缓存的访存缺失率下降了58.2%,而面积和能耗开销仅有少量增加。 Near-threshold voltage computing enables transistor voltage scaling to continue with Moore's Law projection and dramatically improves power and energy efficiency. However, a great number of bit-cell errors occur in large SRAM structures, such as Last-Level Cache (LLC). A Fault-Tolerant LLC (FTLLC) design with conventional 6T SRAM cells is proposed to deal with a higher failure rate which is more than 1% at near-threshold voltage. FTLLC improves the reliability of data stored in Cache by correcting the single-error and compressing multi-errors in Cache entry. To validate the efficiency of FTLLC, FTLLC and prior works are implemented in gem5 and are simulated with SPEC CPU2006. The experiment shows that compared with Concertina at 650 mV, the performance of a 65 nm FTLLC with 4-Byte subblock size improves by 7.2% and the Cache capacity increases by 24.9%. Besides, the miss rate decreases by 58.2%, and there are little increases on area overhead and power consumption.
作者 刘伟 魏志刚 杜薇 曹广义 王伟 LIU Wei;WEI Zhigang;DU Wei;CAO Guangyi;WANG Wei(College of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China;Hubei Key Laboratory of Transportation Internet of Things, Wuhan 430070, China;Department of Computer Science and Technology, Tongji University, Shanghai 200092, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第7期1759-1766,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61672384) 教育部人文社科项目(16YJCZH014) 湖北省自然科学基金(2016CFB466) 中央高校基本科研业务费(WUT:2016III028 2017III028-005) 湖北省技术创新专项重大项目(2017AAA122)~~
关键词 近阈值电压 容错Cache 纠错码 压缩机制 Near-threshold voltage Fault-tolerant Cache Error correction code Compression mechanism
  • 相关文献

参考文献3

二级参考文献35

  • 1Wilkerson C,Gao Hongliang,Alameldeen A R,et al.Trading off cache capacity for reliability to enable low voltage operation[C]//Proc of the 35th International Symposium on Computer Architecture.[S.l.] :IEEE Press,2008:203-214.
  • 2Kulkarni J P,Roy K.Ultralow-voltage process-variation-tolerant schmitt-trigger-based SRAM design[J].IEEE Trans on Very Large Scale Integration Systems,2012,20(2):319-332.
  • 3Kulkarni J P,Kim K,Roy K.A 160 mV robust schmitt trigger based subthreshold SRAM[J].IEEE Journal of Solid-State Circuits,2007,42(10):2303-2313.
  • 4Chang J,Huang Ming,Shoemaker J,et al.The 65-nm 16-MB shared on-die L3 cache for the dual-core Intel Xeon processor 7100 series[J].IEEE Journal of Solid-State Circuits,2007,42(4):846-852.
  • 5Ansari A,Gupta S,Feng Shuguang,et al.Zerehcache:armoring cache architectures in high defect density technologies[C]//Proc of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.New York:ACM Press,2009:100-110.
  • 6Agostinelli M,Hicks J,Xu J,et al.Erratic fluctuations of SRAM cache Vmin at the 90 nm process technology node[C]//Proc of IEEE International IEDM Technical Digest Electron Devices Meeting.Washington DC:IEEE Computer Society,2005:655-658.
  • 7Kim J,Hardavellas N,Mai Ken,et al.Multi-bit error tolerant caches using two-dimensional error coding[C]//Proc ofthe 4th Annual IEEE/ACM International Symposium on Microarchitecture.Washington DC:IEEE Computer Society,2007:197-209.
  • 8Chishti Z,Alameldeen A R,Wilkerson C,et al.Improving cache lifetime reliability at ultra-low voltages[C]//Proc of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.New York:ACM Press,2009:89-99.
  • 9Wilkerson C,Alameldeen A R,Chishti Z,et al.Reducing cache power with low-cost,multi-bit error-correcting codes[J].ACM SIGARCH Computer Architecture News,2010,38(3):83-93.
  • 10Alameldeen A R,Wagner I,Chishti Z,et al.Energy-efficient cache design using variable-strength error-correcting codes[C]//Proc of the 38th Annual International Symposium on Computer Architecture.[S.l.] :IEEE Press,2011:461-471.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部