摘要
针对具有恐惧效应的捕食系统,考虑Beddington-DeAngelis(B-D)功能反应,构建并分析了模型的动力学性质.给出了平衡点的存在条件,并通过Hurwitz判据、Lyapunov函数和Dulc函数对平衡点的局部及全局稳定性进行了分析.
In this paper,the Beddington-DeAngelis(B-D)functional response is considered in combination with the predator-prey system with prey fear effect,and a new model is established and its dynamical properties are analyzed.The existence conditions of the equilibrium are given.And by using the Hurwitz criterion and constructing Lyapunov function or Dulc function,the local stability and global stability of the equilibria are analyzed.
作者
闫建博
刘贤宁
YAN Jian-bo;LIU Xian-ning(School of Mathematics and Statistics, Southwest University, Chongqing 400715, China)
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第6期109-114,共6页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金项目(11671327)
关键词
捕食系统
恐惧效应
B-D功能反应
稳定性
predator-prey system
fear effect
B-D functional response
stability