期刊文献+

基于通路串扰分析的阿尔茨海默症致病机理探寻 被引量:2

Pathogenesis Exploration of Alzheimer’s Disease Based on Pathway Crosstalk Analysis
原文传递
导出
摘要 目前特征基因提取及致病信号传导通路的重构已成为探寻重大疾病致病机理的重要手段。考虑到基因之间的关联性,利用互信息(mutual information,MI)算法提取出AD患病及其健康对照样本中关联度具有明显变化的基因作为特征基因,在此基础上,基于KEGG通路分析获取特征基因所涉及的信号传导通路,利用距离相关性(distance correlation,DC)算法度量它们之间的串扰关系,最终探寻到33对AD患病前后串扰关系变化较大的通路。通过生物学分析得到:慢性粒细胞白血病通路和剪接体相关通路、子宫内膜癌通路和霍乱弧菌感染通路、幽门螺杆菌感染的上皮细胞传导通路和嘧啶代谢通路,以及促性腺激素通路和嘧啶代谢等通路间的串扰及特征基因的显著变化对AD的发生和发展具有重要的推动作用,研究成果为探寻AD的致病机理提供了新的思路及有益的支撑。 Recently, the extraction of characteristic genes and the reconstruction of pathogenic signal transduction pathways have become an important means to explore the pathogenesis of many diseases. Considering the association between genes, mutual information (MI) algorithm is applied to extract the genes with significant changes in association between AD and the healthy samples Based on that, signal transduction pathways were obtained based on KEGG pathway analysis. Then, distance correlation (DC) algorithm was used to measure the crosstalks between them. Finally, 33 pairs of pathways were found to have larger changes in crosstalk. The biological analysis show that, the crosstalk between Chronic myeloid leukemia and Spliceosome, Endometrial cancer and Vibrio cholerae infection, Epithelial cell signaling in Helicobacter pylori infection and Pyrimidine metabolism, GnRH signaling pathway and Pyrimidine metabolism, as well as the significant changes of characteristic genes play important roles in the onset and development of AD. Our method provide a new and efficient way to explore the pathogenesis of AD.
作者 孔薇 底奔腾 Kong Wei;Di Benteng(College of Information Engineering, Shanghai Maritime University, Shanghai, 201306)
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2018年第7期3192-3199,共8页 Genomics and Applied Biology
基金 国家自然科学基金资助项目(NO.61271446) 上海市科委自然科学基金项目(NO.18ZR1417200)共同资助
关键词 阿尔茨海默症 互信息 距离相关性 通路串扰 Alzheimer's disease Mutual information Distance correlation Pathway crosstalk
  • 相关文献

参考文献2

二级参考文献32

  • 1Garber K. Genomic medicine: gene expression tests foretell breast cancer's future [ J ]. Science, 2004,303 (5665) : 1754 - 1755.
  • 2Varadan V, Anastassiou D. Inference of disease-related molecular logic from systems-based microarray analysis [J]. PLoS Cornput Biol, 2006, 2(6) : e68.
  • 3Kostka D, Spang R. Finding disease specific alterations in the co-expression of genes [ J ]. Bioinformatics, 2004, 20( sup 1 ) :i194 - i199.
  • 4Prieto C, Rivas M J, Sanchez J M, et al. Algorithm to find gene expression profiles of deregulation and identify families of disease-altered genes[J].Bioinformatics, 2006,22(9) : 1103 - 1110.
  • 5Steuer R, Kurths J, Daub C O, et al. The mutual information: detecting and evaluating dependencies between variables [J]. Bioinformatics, 2002, 18( sup 2) :231 - 240.
  • 6Huber W, Carey V J, Long L, et al. Graphs in molecular biology [ J ]. BMC Bioinformatics, 2007,8 ( sup 6) :S8.
  • 7Alon U, Barkai N, Notterman D A, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays I J ]. Proc Natl Acad Sci, 1999, 96 (12) : 6745 -6750.
  • 8Shaik J S, Yeasin M. A unified framework for finding differentially expressed genes from microarray experiments [J].BMC Bioinformatics, 2007, 8:347.
  • 9Li X, Rao S, Wang Y, et al. Gene mining: a novel and powerful ensemble decision approach to hunting for genes using microarray expression profiling [J]. Nucleic Acids Research, 2004, 32 ( 9 ) : 2685 - 2694.
  • 10Diao Q, Hu W, Zhong H, et al. Disease gene explorer: display disease gene dependency by combining Bayesian networks with clustering [ C ]//IEEE Computational Systems Bioinformatics Conference. Stanford, USA, 2004:574 - 575.

共引文献8

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部