期刊文献+

三维纳米液膜沉积结构的模拟研究 被引量:2

Simulation on Three Dimensional Nanoscale Thin-Film Deposition
原文传递
导出
摘要 基于三维动力学蒙特卡罗模型,再现了纳米液膜干燥后形成的双尺度沉积结构,探究了液体化学势、纳米粒子移动速率、液体临界蒸发率以及化学势锐度等参数对纳米液膜沉积结构的影响。结果表明,纳米液膜干燥时,液膜中的纳米粒子随着三相线移动自组装形成各种各样的沉积结构沉积在基板上。纳米液膜蒸发过程中,当液体蒸发达到临界蒸发率时液体化学势将发生突变,使其形成两种沉积结构。随液体初始化学势的增大,沉积结构逐渐变为均匀分布的密集网状结构。液体临界蒸发率越小,液体化学势突变后形成的沉积结构越明显。纳米粒子的移动速率越快,沉积结构中的枝状结构越少。化学势锐度对双尺度沉积结构的差异有很大的影响,锐度越大,两种沉积结构的差异越大。 The dual scale structure formed after the drying based on the three-dimensional kinetic Monte Carlo model. The effects of liquid chemical potential,nanoparticle migration rate,chemical potential sharpness and liquid critical evaporation rate on the structure of film are explored. The results indicate that,when the film is drying,the nanoparticles in the film move along with the three phase lines,and a variety of sedimentary structures are formed in the substrate. With the increase of the initialization chemical potential of the liquid,the deposition structure gradually becomes a dense network structure with uniform distribution. With the decrease of the critical evaporation rate of liquid,the deposition structure become more obvious after the liquid chemical potential is abrupt. The faster the nanoparticle moves,the less the branched structure in the deposition structure. The sharpness of chemical potential has a great influence on the difference of the structure of the double-scale sedimentary structure. With the greater the sharpness,the difference between the two kinds of sedimentary structures will be greater.
作者 曹进军 单彦广 Cao Jinjun;Shan Yanguang(School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 20009)
出处 《化学通报》 CAS CSCD 北大核心 2018年第7期641-645,共5页 Chemistry
关键词 纳米液膜 动力学蒙特卡罗模型 沉积结构 化学势 Nanoscale liquid film KMC model Sedimentary structure Chemical potential
  • 相关文献

参考文献1

二级参考文献50

  • 1Hwang, J. K.; Cho, S.; Dang, J. M.; Kwak, E. B.; Song, K.; Moon, J.; Sung, M. M. Nat. Nanotechnol. 2010, 5, 742.
  • 2Tan, C. P.; Cipriany, B. R.; Lin, D. M.; Craighead, H. G. Nano Lett. 2010, 10, 719.
  • 3Minari, T.; Liu, C.; Kano, M.; Tsukagoshi, K. Adv. Mater. 2012, 24, 299.
  • 4Ito, T.; Okazaki, S. Nature 2000, 406, 1027.
  • 5Geissler, M.; Xia, Y. N. Adv. Mater. 2004, 16, 1249.
  • 6Huo, F. W.; Zheng, Z. J.; Zheng, G. F.; Giam, L. R.; Zhang, H.; Mirkin, C. A. Science 2008, 321, 1658.
  • 7Xu, H.; Ling, X. Y.; van Bennekom, J.; Duan, X.; Ludden, M. J. W.; Reinhoudt, D. N.; Wessling, M.; Lammertink, R. G. H.; Huskens, J. J. Am. Chem. Soc. 2009, 131, 797.
  • 8Kraus, T.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N. D.; Wolf, H. Nat. Nanotechnol. 2007, 2, 570.
  • 9Tekin, E.; Smith, P. J.; Schubert, U. S. Soft Matter 2008, 4, 703.
  • 10Zhang, L.; Liu, H. T.; Zhao, Y.; Sun, X. N.; Wen, Y. G.; Guo, Y. L.; Gao, X. K.; Di, C. A.; Yu, G.; Liu, Y. Q. Adv. Mater. 2012, 24, 436.

共引文献16

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部