期刊文献+

一类伪polar环(英文)

A Class of Pseudopolar Rings
原文传递
导出
摘要 受拟polar环和伪polar环概念的启发,引入根polar环的定义.称环R中的元素α是根polar元,如果存在p^2=p∈R使得p∈comm^2(α),α+p∈U(R)且ap∈J(R);称环R是根polar的,如果R中每个元素都是根polar元.本文研究了根polar环的基本性质并构造了许多例子,同时借助根polar环研究了相关环类.证明了阶数大于1的任意矩阵环都不是根polar的,因此给出局部环上2阶矩阵是根polar元的判定准则. Motivated by the concepts of quasipolar rings and pseudopolar rings, we intro- duce the notion of radpolar rings. An element a of a ring R is called radpolar if there exists p^2 = p ∈ R such that p ∈ comm^2(a), a+p ∈ U(R) and ap ∈ J(R); R is radpolar if every element of R is radpolar. Basic properties and illustrative examples of this sort of rings are presented; some related rings are studied by means of radpolar rings. It is proved that any matrix ring of size greater than 1 is not radpolar. Consequently, we determine when a 2 × 2 matrix over a local ring is radpolar.
作者 崔建 殷晓斌 CUI Jian;YIN Xiaobin(Department of Mathematics, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China)
出处 《数学进展》 CSCD 北大核心 2018年第4期543-552,共10页 Advances in Mathematics(China)
基金 supported by NSFC(No.11401009) the Key Natural Science Foundation of Anhui Educational Committee(No.KJ2014A082) Anhui Provincial Natural Science Foundation(No.1408085QA01)
关键词 根polar环 伪polar环 强正则环 拟polar环 矩阵 radpolar ring pseudopolar ring strongly regular ring quasipolar ring matrix
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部