摘要
针对大数据环境下属性约简问题,提出基于MapReduce改进离散型萤火虫算法(IDGSO)和多重分形(MFD)的属性约简方法.首先,通过对萤火虫个体的移动方式进行离散化改进,引入迁徙策略和高斯变异策略,避免陷入局部最优,并提出改进离散型萤火虫算法.然后,将IDGSO结合MFD应用于属性约简中.最后,针对大数据环境下属性约简问题,采用MapReduce编程模式,实现对IDGSO和MFD的并行化.在UCI数据集和实际气象数据集上的实验表明,文中算法约简性能较优,运行效率较快,具有较好的有效性和可行性.
To solve the problem of attribute reduction in a big data environment, an attribute reduction method based on MapReduce-based improved discrete glowworm swarm algorithm(IDGSO) and muhi-fractal dimension (MFD) is proposed. Firstly, the moving way of glowworm individuals is discretized to avoid the algorithm falling into local optimum, and the migration strategy and Gaussian mutation strategy are introduced. An improved discrete glowworm swarm algorithm is proposed. Secondly, the improved discrete glowworm algorithm combined with multi-fractal dimension is applied to attribute reduction. Finally, to solve the problem mentioned above, the MapReduce programming model is adopted to realize the parallelization of IDGSO and MFD. Experiments on UCI datasets and the real meteorological datasets show that the proposed method produces high efficiency, effectiveness and feasibility of reduction.
作者
陆玉佳
倪志伟
朱旭辉
许力分
伍章俊
LU Yujia;NI Zhiwei;ZHU Xuhui;XU Lifen;WU Zhangjun(School of Management, Hefei University of Technology, Hefei 230009;Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of Education, Hefei University of Technology, Hefei 230009)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2018年第6期537-547,共11页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金重大研究计划培育项目(No.91546108)
国家自然科学基金重大项目(No.91490725)
国家自然科学基金创新研究群体项目(No.71521001)
安徽省自然科学基金项目(No.1708085MG169)
安徽省教育厅人文社会科学研究项目(No.JS2017AJRW0135)资助~~