摘要
本文研究了非线性二阶常微分方程周期边值问题{-u″+μ2 u=λg(t)f(u),0<t<2π,u(0)=u(2π),u′(0)=u′(2π)正解的存在性,其中μ>0为常数,λ是一个正参数,g:[0,2π]→[0,∞),f:[0,α)→[0,∞)为连续函数,α>0为常数.主要结果的证明基于锥拉伸与压缩不动点定理.
In this paper, we consider the existence of positive solutions for the nonlinear second-order periodic problems.
{-u″+μ^2 u=λg(t)f(u),0〈t〈2π,
u(0)=u(2π),u′(0)=u′(2π)
where μ〉0 is a constant, λ is a positive parameter, g:[0,2π]→[0,∞),f:[0,α)→[0,∞) are continuous functions, and a 〉 0 is a constant.The proofs of the main results are based on the fixed-point theorem of cone expansion-compression.
作者
马满堂
MA Man-Tang(College of Mathematics and Statistics, Northwest Normal University,Lanzhou 730070, Chin)
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第4期693-697,共5页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11671322
11361054)
关键词
周期问题
锥
正解
存在性
Periodic problem
Cone
Positive solution
Existence