摘要
许多图像分类问题具有类内相似而类间差异的特点,然而花卉图像的分类往往存在着类间相似和类内差异的现象,因此,基于传统人工设计的图像特征进行花卉图像分类效果一般不够理想.针对这个问题,本文提出融合深度特征和人工特征的花卉图像特征提取方法并在此基础上实现花卉图像的分类.首先构建基于卷积神经网络CNN的特征提取框架,然后利用CNN模型从颜色、亮度多特征角度提取目标对象特征,并利用CNN低层级上的特征图设计了一种基于卷积神经网络的纹理特征,最后将上述多个特征与传统的人工设计图像特征经过融合得到一组花卉图像特征.分类实验结果表明,本文提取的融合特征不仅维度低于传统的人工设计特征,而且具有更好的分类准确性.
While many image classification problems are featured by intra-class similarity and inter-class dissimilarity,the phenomenon of inter-class similarity and intra-class dissimilarity often occurs in flower image classification,thus yielding unsatisfactory flower image classification accuracy if traditional manual features are used. To solve this problem,a method combining deep features and manual feature of flower images is proposed for flower image classification. Firstly,a unified depth feature extraction framework is constructed based on deep convolutional neural network. Then,color and intensity features are obtained via CNN model respectively. Next,we design a texture feature based on CNN through the feature map in the low layers. Finally,after the multi-feature fusion with above features and a manual feature,a more comprehensive description of flower image is acquired. The classification experiments show that the proposed features at lower dimensions than the traditional ones achieve better performance in flower image classification.
作者
林思思
叶东毅
陈昭炯
LIN Si-si;YE Dong-yi;CHEN Zhao-jiong(College of Mathematics and Computer Science,Fuzhou University, Fuzhou 350100 ,China)
出处
《小型微型计算机系统》
CSCD
北大核心
2018年第7期1446-1450,共5页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61502105)资助
关键词
卷积神经网络(CNN)
深度特征
人工特征
花卉图像分类
convolutional neural network( CNN )
deep feature
manual feature
flower images classification