期刊文献+

在线多任务学习的骨干网网络流量分类研究 被引量:3

Backbone Network Traffic Classification Based on Online Multi-task Learning
下载PDF
导出
摘要 网络流量分类是机器学习与网络安全领域中的一个研究热点.针对高速骨干网上网络流量的高速性与演化特性,基于在线稀疏学习算法FTPRL,提出一种在线多任务特征选择学习算法-MT-FTPRL.使用了Per-Coordinate学习率,对每个特征的学习率分别考虑,与全局学习率相比更具优势;提出一个在线多任务学习的网络流量分类框架,通过多个网络流之间的信息共享,提取一组拥有良好判别能力的共同特征子集;在实验部分构造了一个基于真实的骨干网网络流量的MAWI数据集,并通过对比实验对提出的算法及分类框架进行验证.实验表明,算法有着满意的分类准确性和检测效率,且能在多个网络流中提取一组共同的特征子集,提高分类系统的鲁棒性,更适应网络流量动态演化的特点. Network traffic classification is a hot topic in machine learning and network security. Aiming at the features of high speed and evolutionary of network traffic on high speed backbone network,an online multi-task feature selection algorithm-MT-FTPRL is proposed,based on online sparse learning algorithm-FTPRL. Using the Per-Coordinate learning rate,this learning rate for each feature is considered separately,which is more advantageous than the global learning rate. Proposed an online multi-task learning based network traffic classification framework,extracting a set of common features with good discriminative ability,by sharing information between multiple tasks; A MAWI data set based on real backbone network traffic is constructed,and the proposed algorithm and classification framework are verified by comparison experiment. The experiment shows that,the proposed algorithm has excellent classification accuracy and detection efficiency,also can extract a set of common feature subsets in multiple network streams to improve the robustness of the classification system,and adapt to the features of dynamic evolution of network traffic.
作者 易磊 潘志松 陶蔚 杨海民 YI Lei;PAN Zhi-song;TAO Wei;YANG Hai-min(Institute of Command Information System, PLA University of Science and Technology, Nanjing 210007 ,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第7期1459-1464,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61473149)资助
关键词 在线学习 多任务学习 特征选择 骨干网 网络流量分类 online learning multi-task learning feature selection backbone network network traffic classification
  • 相关文献

参考文献1

二级参考文献21

  • 1ZHANG Jun, CHEN Xiao, XIANG Yang, et al. Robust net-work traffic classification [ J ]. IEEE/ACM transactions on networking, 2015, 23(4): 1257-1270.
  • 2NGUYEN T T T, ARMITAGE G. A survey of techniques for internet traffic classification using machine learning [ J ]. IEEE communications surveys & tutorials, 2008, 10 ( 4 ) : 56-76.
  • 3MOORE A W, ZUEV D. Internet traffic classification using bayesian analysis techniques [ J ]. ACM sigmetrics perform- ance evaluation review, 2005, 33(1) : 50-60.
  • 4AULD T, MOORE A W, GULL S F. Bayesian neural net- works for internet traffic classification [ J ]. IEEE transactions on neural networks, 2007, 18(1) : 223-239.
  • 5ESTE A, GRINGOLI F, SALGARELLI L. Support vector machines for TCP traffic classification [ J ]. Computer net- works, 2009, 53( 14): 2476-2490.
  • 6SCHATZMANN D, MiiHLBAUER W, SPYROPOULOS T, et al. Digging into HTTPS : flow-based classification of web- mail traffic[ C]//Proceedings of the 10th ACM SIGCOMM conference on internet measurement. New York, NY, USA, 2010: 322-327.
  • 7WANG Yu, YU Shunzheng. Supervised learning real-time traffic classifiers [ J ]. Journal of networks, 2009, 4 ( 7 ) : 622-629.
  • 8NGUYEN T T T, ARMITAGE G, BRANCH P, et al. Time- ly and continuous machine-learning-based classification for interactive IP traffic [ J ]. IEEE/ACM transactions on net- working, 2012, 20(6): 1880-1894.
  • 9ZANDER S, NGUYEN T, ARMITAGE G. Automated traf- fic classification and application identification using ma- chine learning [ C ]//Proceedings of the IEEE conference on local computer networks 30th anniversary. Sydney, NSW, Australia, 2005: 250-257.
  • 10ERMAN J, ARLITT M, MAHANTI A. Traffic classifica- tion using clustering algorithms [ C ]//Proceedings of the 2006 SIGCOMM workshop on mining network data. New York, NY, USA, 2006: 281-286.

共引文献2

同被引文献10

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部