期刊文献+

最优正则化参数的核FCM聚类算法 被引量:5

Kernel FCM Clustering Algorithm Based on Optimal Regularization Parameters
下载PDF
导出
摘要 模糊C均值聚类算法(Fuzzy C-mean,FCM)因随机选取初始聚类中心,造成算法求解过程不稳定(即存在不适定性问题).针对此问题,提出一种最优正则化参数的核FCM算法,首先在核FCM的目标函数中引入正则化项和正则化参数;然后推导出用L曲线法寻优正则化参数所需的迭代更新公式;最后用迭代更新公式设计最优正则化参数的核FCM算法.在UCI测试数据集上的实验结果表明:本文所提算法的平均稳定性较传统FCM提高了5倍,平均准确率和平均召回率也分别提高了30%和33%.本文用L曲线法寻优核FCM的正则化参数是可行的,能有效地抑制FCM的不适定性. Fuzzy C-mean clustering algorithm( Fuzzy C-mean,FCM) randomly selected the initial clustering center,Resulting in algorithmic solution to the process of instability( that is,there are ill-posed problem). In order to solve this problem,a kernel FCM algorithm with optimal regularization parameters is proposed. First,the regularization term and the regularization parameter are introduced in the objective function of the kernel FCM. Then,the iterative updating formula is needed to optimize the regularization parameters by the curve method. Finally,the kernel FCM algorithm for optimal regularization parameters is designed by using iterative updating formula.The experimental results on the UCI test data set show that the average stability of the proposed algorithm is 5 times higher than that of the traditional FCM,and the average accuracy and average recall rate are increased by 30% and 33% respectively. In this paper,it is feasible to use the L-curve method to find the regularization parameters of the FCM,which can effectively suppress the FCM's ill-positivity.
作者 陈书文 覃华 苏一丹 CHEN Shu-wen;QIN Hua;SU Yi-dan(College of Computer and electronic Information, Guangxi University ,Nanning 530004, Chin)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第7期1537-1541,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61363027)资助
关键词 模糊C均值聚类 不适定性问题 正则化参数 L曲线 fuzzy C-mean ill-posed problem regularization parameter L-curve
  • 相关文献

参考文献2

二级参考文献25

  • 1杨勇,郑崇勋,林盘,潘晨,顾建文.基于改进的模糊C均值聚类图像分割新算法[J].光电子.激光,2005,16(9):1118-1122. 被引量:20
  • 2吉洪诺夫AH 阿尔先宁BЯ 王秉枕译.不适定问题的解法[M].北京:地质出版社,1979..
  • 3Chen M S,Wang S W.Fuzzy clustering analysis for optimizing fuzzy membership functions[J].Fuzzy sets and systems,1999,103(2):239-254.
  • 4Alexiew K M,Georfieva O I.Improved fuzzy clustering for identification of Takagi-Sugeno model[J].Proceedings of IEEE Conference on Intelligent Systems,2004,1(22-24):213-218.
  • 5Tsekouras G,Sarinerinerveis H,Kavakli E,et al.A hierarchical fuzzy-clustering approach to fuzzy modeling[J].Fuzzy Sets and System,2005,150(2):245-266.
  • 6Zou B,Chen R,Xu Z.Learning performance of Tikhonov regularization algorithm with geometrically beta-mixing observations[J].Journal of Statistical Planning and Inference,2011,141:1077-1087.
  • 7Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Trans on System,Man,Cybernetics,1985,15(1):116-132.
  • 8Box G E P,Jenkins G M.Time series analysis,forecasting and control[M].3rd edition.Englewood Cliffs:Prentice Hall,1994.
  • 9Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
  • 10Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.

共引文献6

同被引文献28

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部