期刊文献+

Bi基拓扑绝缘体纳米薄片的制备和输运性质的研究

Synthesis and transport properties of Bi-based topological insulator nanoplates
下载PDF
导出
摘要 拓扑绝缘体表面态传输耗散少,有可能作为变电站中的电传输新材料.我们采用化学气相沉积法制备了Bi_2Te_3拓扑绝缘体纳米薄片,通过光学显微镜、原子力显微镜和扫描电镜表征,优化了制备参数进而获得Bi_2Te_3纳米薄片.采用光刻技术在Bi_2Te_3纳米薄片上制作金属电极,测量其输运性质,观察到了来自拓扑表面态的弱反局域化效应.运用传统的弱局域化理论得到表面态电子的退相干长度约为130 nm. Topological insulators have the low transport consumption and could be possibly used as the novel electrical transport materials in transformer substation. Here,we use chemical vapor deposition method to synthesize Bi2Te3 topological insulator nanoplates. Through characterization of optical microscopy,atomic force microscopy and scanning electron microscopy,we optimize the synthetic parameters and further obtain the Bi2Te3 nanoplates. We employe photolithography technique to fabricate metallic electrodes based on nanoplates. We measure the transport properties and observe the weak antilocalization effect originated from the topological surface states. We apply the traditional weak localization theory and find that the coherence length of surface state electrons is approximately 130 nm.
作者 王庆斌 叶军 蔡日 陈国辉 林明伟 宋翰彪 WANG Qing-bin;YE Jun;CAI Ri;CHEN Guo-hui;LIU Jun-ting;SONG Han-biao(Guangdong Power Grid Co.,Ltd. Yunfu Power Supply Bureau,Yunfu,Guangdong 527300,China;Wuhan Xintaiyu Power Electronic Technology Co.,Ltd.,Wuhan,Hubei 430014,China)
出处 《大学物理》 2018年第6期30-32,49,共4页 College Physics
关键词 拓扑绝缘体 BI2TE3 化学气相沉积 弱反局域化 topological insulators Bi2Te3 chemical vapor deposition weak antilocalization
  • 相关文献

参考文献4

二级参考文献55

  • 1Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Guti6rrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.;Ismach, A. F.; et al. Progress, challenges, and opportunities in twotimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.
  • 2Koski, K. J.; Cui, Y. The new skinny in twolimensional nanomaterials. ACSNano 2013, 7, 3739-3743.
  • 3Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832-17838.
  • 4Nolas, G. S.; Sharp, J.; Goldsmid, H. J. Thermoelectrics. Basic Principles and New Materials Developments; Springer: New York, 2001.
  • 5Zhang, H. J.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.
  • 6Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398-402.
  • 7Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045.
  • 8Zuti6, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323-410.
  • 9Moore, J. Topological insulators: The next generation. Nat. Phys. 2009, 5, 378-380.
  • 10Zhang, Y.; He, K.; Chang, C.-Z.; Song, C.-L.; Wang, L.-L.; Chen, X.; Jia, J.-F.; Fang, Z.; Dai, X.; Shan, W.-Y. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584-588.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部