期刊文献+

一种结合深度学习和随机森林的地平线检测方法 被引量:4

A Horizon Detection Method Based on Deep Learning and Random Forest
下载PDF
导出
摘要 已有地平线检测方法检测效果受环境影响较大,计算复杂度较高。提出了一种基于深度学习与随机森林相结合的地平线检测方法。利用深度学习模型进行深度特征提取,将得到的深度特征用于随机森林训练,采用随机森林回归投票方式得到地平线检测结果。仿真结果表明,所提方法检测效果较好。不仅在笔直的道路上检测结果与真实值比较相近,而且在阴影区域以及弯道中的预测值也基本与真实值重合,表明该方法鲁棒性强,能够很好的用于复杂道路场景中的地平线检测。 The detection effect of existing horizon line detection methods is greatly affected by the environment, and the computational complexity is high. Aiming at the problem of horizon line detection in complex road scene in real-life, a horizon line detection method based on deep learning and random forest is proposed. The deep learning model is used to extract the depth features, then the obtained depth features are used for random forest training. The results of horizon line detection are obtained by random forest regression-voting. The simulation results show that this method has good detection effect. The detection results are not only similar to the real value on the straight road, but also are basically coincident with the true value in the shadow and the curve area. It shows that the method is robust. It can be used to detect the horizon line in complex road scene.
作者 叶继华 时淑霞 李汉曦 左家莉 王仕民 Ye Jihua;Shi Shuxia;Li Hanxi;Zuo Jiali;Wang Shimin(School of Computer Information Engineering, Jiangxi Normal University, Nanchang 330022, Chin)
出处 《系统仿真学报》 CAS CSCD 北大核心 2018年第7期2507-2514,共8页 Journal of System Simulation
基金 国家自然科学基金(61462042 61462043 61650105)
关键词 地平线检测 深度学习 随机森林 复杂道路场景 仿真 horizon line deep leaming random forest complex road scene simulation
  • 相关文献

参考文献4

二级参考文献40

  • 1Zhao W, Chellappa R, Rosenfeld A, et al. Face recognition: A literature survey [J]. ACM Computing Surveys, 2003, 35(4): 399- 458.
  • 2Pantic M, Rothkrantz M. Automatic analysis of facial expression: The state of the art [J]. IEEE Trans on PAMI, 2000, 22(12): 1424-1445.
  • 3WANG Jiangang, Sung E. Facial feature extraction in an infrared image by proxy with a visible face image [J]. IEEE Trans on Instrumentation and Measurement, 2007, 56(5): 2057 - 2066.
  • 4Hess M, Martinez G. Facial feature extraction based on the smallest univalue segment assimilating nucleus (SUSAN) algorithm [C]//Proceedings of Picture Coding Symposium. San Franscisco, California, 2004, 261 - 266.
  • 5Smith S M, Brady J M. SUSAN-A new approach to low level image processing [J]. International Journal of Computer Vision, 1997, 23(1): 45- 78.
  • 6Breiman L. Random forests [J]. Machine Learning, 2001, 45: 5-32.
  • 7Ma Yong. Research on face detection and organ localization under complex background [D]. Beijing: Tsinghua University, July 2004.
  • 8Zhou Z H, Geng X. Projection functions for eye detection [J]. Pattern Recognition, 2004, 37(5) : 1049 - 1056.
  • 9Bao G Q, Xiong S S, Zhou Z Y. Vision-based horizon extraction for micro air vehicle flight control[J]. IEEE Transactions on Instrumentation and Measurement, 2005,54(3) : 1067 - 1072.
  • 10Pereira G A S, lscold P, Torres L A B. Airplane attitude estimation using computer vision: simple method and actual experiments[J]. Electronics Letters, 2008, 44(22):1303 - 1305.

共引文献39

同被引文献27

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部