期刊文献+

一种音乐舞蹈视频关键帧提取方法 被引量:4

A Method of Key Frame Extraction for Music and Dance Video
下载PDF
导出
摘要 针对音乐舞蹈视频动作复杂,冗余动作多的问题,提出了一种提取舞蹈视频关键帧的方法。对舞蹈视频中相邻的两个图像帧进行光流计算,计算每张光流图的熵并提取舞蹈视频中音乐的特征,将音乐特征与光流图的熵值序列进行融合,得到一个与音乐相匹配的熵值序列,通过阈值比较得到舞蹈视频的关键帧集合。实验结果表明:该算法能够有效地提取出冗余少且概括视频内容的关键帧,对舞蹈视频分析和舞蹈动作编排等方面起到了重要的辅助作用。 Aiming at the complicated and redundant action of music and dance video, a method of extracting dance video key frame is proposed. The optical flow of two adjacent image frames in the dance video is calculated. The entropy of each optical flow graph is calculated and the characteristics of the music in the dance video are extracted. The music characteristics are merged with the entropy sequence of the optical flow graph and a sequence of entropy matching with music is obtained. The key frame of dance video is achieved by threshold comparison. The experimental results show that the algorithm can effectively extract the key frames with less redundancy and summary of the video content, and plays an important role in the analysis of dance video and choreography.
作者 马楠 石祥滨 代钦 刘翠微 刘芳 Ma Nan;Shi Xiangbin;Dai Qin;Liu cuiwei;Liu Fang(College of Computer Shenyang Aerospace University, Shenyang 110136, China;College of Information Liaoning University, Shenyang 110036, China;College of Information, Shenyang Institute of Engineering, Shenyang 110136, China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2018年第7期2801-2807,共7页 Journal of System Simulation
基金 国家自然科学基金(61170185 61602320) 辽宁省博士启动基金(201601172) 辽宁省教育厅一般项目(L201607 L2014070)
关键词 关键帧 光流图 图像熵 音乐特征 特征融合 key frame optical flow graph image entropy musical characteristics feature fusion
  • 相关文献

参考文献3

二级参考文献24

  • 1Le Q V, Zou W Y, Yeung S Y,et al. Learning hierarchical invariant spatio-temporal features for actionrecognition with independent subspace analysis [C] // IEEE Conference on Computer Vision and PatternRecognition. Providence,USA: IEEE Press, 2011 : 3361-3368.
  • 2Ma A, Yuen P, Zou W,et al. Supervised spatio-temporal neighborhood topology learning for action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology,2013,23(8) : 1447-1460.
  • 3Schindler K, Van Gool L. Action snippets: How many frames does human action recognition require? [_C]//IEEE Conference on Computer Vision and Pattern Recognitioru Anchorage, USA: IEEE Press, 2008: 1-8.
  • 4Cao X,Ning B,Yan P,et al. Selecting key poses on manifold for pairwise action recognition[J]. IEEETransactions on Industrial Informatics , 2012,8(1) : 168-177.
  • 5Liu L, Shao L, Zhen X, et al. Learning discriminative key poses for action recognition [J]. IEEETransactions on Cybernetics , 2013,43(6) ; 1860-1870.
  • 6Jiang Z,Lin Z,Davis L S. Recognizing human actions by learning and matching shape-motion prototypetrees[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 9 2012,34(3): 533-547.
  • 7Wang H,Klaser A,Schmid C,et al. Action recognition by dense trajectories[C]//IEEE Conference onComputer Vision and Pattern Recognition. Providence, USA: IEEE Press, 2011 : 3169-3176.
  • 8Yang Y,Saleemi I,Shah M. Discovering motion primitives for unsupervised grouping and one-shotlearning of human actions, gestures, and expressions[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2013,35(7) : 1635-1648.
  • 9Felzenszwalb P F, Girshick R B, McAllester D,et al. Object detection with discriminatively trained part-basedmodels[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(9): 1627-1645.
  • 10Giese M A,Poggio T. Neural mechanisms for the recognition of biological movements [J], NatureReviews Neuroscience,2003,4(3): 179-192.

共引文献12

同被引文献38

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部