期刊文献+

基于方差补偿自适应Kalman滤波的ARMA与PSO-SVM模型变形预测 被引量:9

The Deformation Prediction of ARMA and PSO-SVM Model Based on Variance Compensation Adaptive Kalman Filter
下载PDF
导出
摘要 根据变形监测数据非线性、波动性特征及实时动态数据处理的要求,在选取方差补偿自适应Kalman滤波进行随机扰动剔除及模型误差削弱分析的基础上,采取自回归移动平均模型(ARMA)构建趋势预测值,最后通过粒子群(PSO)优化参数的支持向量机(SVM)获得误差补偿修正的ARMA模型。应用该方法对变形监测工程实例进行沉降预测,预测结果验证了该方法能较好地描述复杂环境因素下的工程实际变形量,对工程预警预测有一定的参考价值。 According to the non-linearity,volatility characteristics and real-time dynamic data processing of deformation monitoring data,the auto-regressive and moving average model(ARMA)is used to construct the trend,based on the selection of variance compensation adaptive Kalman filter for stochastic disturbance rejection and model error weakening analysis.The error compensation and correction ARMA model is obtained by using particle swarm optimization(PSO)parameter optimization support vector machine(SVM).The method is used to predict the deformation monitoring engineering.The prediction results show that the method can describe the actual deformation of engineering under complex environmental factors and play a certain reference value in forecasting the project.
作者 容静 刘立龙 康昊华 李松青 周吕 RONG Jing;LIU Lilong;KANG Haohua;LI Songqing;ZHOU Lü(Guangxi Key Laboratory of Spatial Information and Geomatics,12 Jiangan Road,Guilin 541004,China;Jiangan Road,Guilin 541004,China College of Geomatics and Geoinformation,Guilin University of Technolog,12 Jiangan Road,Guilin 541004,China;J iangan Road,Guilin 541004,China Guangxi Scientific Experiment Center of Mining,Metallurgy and Environment,Guilin University of Technology,319 Yanshan Street,Guilin 541006,China;School of Geodesy and Geomatics,Wuhan University,129 Luoyu Road,Wuhan 430079,China;Key Laboratory for Digital Land and Resources of Jiangxi Province,East China University of Technology,418 Guanglan Road,Nanchang 330013,China)
出处 《大地测量与地球动力学》 CSCD 北大核心 2018年第7期689-694,共6页 Journal of Geodesy and Geodynamics
基金 国家自然科学基金(41461089) 广西研究生教育创新计划(YCSW2017155) 广西"八桂学者"岗位专项 广西空间信息与测绘重点实验室资助课题(1638025-26 15-140-07-32) 江西省数字国土重点实验室开放基金(DLLJ201711)~~
关键词 KALMAN滤波 ARMA PSO-SVM 误差补偿 变形预测 Kalman filtering ARMA PSO-SVM error compensation deformation prediction
  • 相关文献

参考文献9

二级参考文献106

共引文献216

同被引文献89

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部