期刊文献+

曝气量对微生物燃料电池脱氮的影响 被引量:6

Effect of aeration rate on nitrogen removal by microbial fuel cells
下载PDF
导出
摘要 实验构建生物阴极双室微生物燃料电池,探究在微氧条件下曝气量对其产电性能和阴极脱氮的影响.以乙酸钠为碳源,氯化铵为氮源.实验在25℃温度下,阴极持续曝气,并控制反应器内为微氧状态,富集培养短程硝化反硝化菌群.实现了在特定曝气量条件下生物阴极短程硝化反硝化脱氮.实验结果表明,在曝气量为1.64 mL·min-1的条件下,短程硝化反硝化脱氮效果最好.亚硝态氮积累率为81.70%,总氮去除率达到69.66%,最大稳定电压达0.47 V左右,库伦效率为43.8%,产电效能较好.针对实际污水处理开展相关实验,MFC阴极短程硝化反硝化总氮去除率可达到81.93%,优于全程硝化反硝化.在短程硝化反硝化的微生物群落中,Betaproteobacteria纲和Thauera菌属在短程硝化反硝化中得到了有效的富集,有利于生物脱氮,并且Nitrosomonas菌是主要的氨氧化菌属. A bio-cathode double chamber microbial fuel cell was constructed to investigate the influence of aeration rate on its electrical generation performance and cathodic nitrogen removal under micro-aerobic conditions.In the experiment,sodium acetate and ammonium chloride were used as carbon source and nitrogen source,respectively.The reactor was started at 25℃.Continuous aeration was applied to the cathode chamber for the micro-aerobic condition to enrich a short-cut nitrification and denitrification microbial community.The short-cut nitrification and denitrification were realized in the biological cathode at a specific aeration rate.The experimental results showed that at an aeration rate of 1.64 mL·min^-1,short-cut nitrification and denitrification were the best.The accumulation rate of nitrite nitrogen was 81.70%,total nitrogen removal rate reached 69.66%,the maximum stable voltage was around 0.47 V,the coulombic efficiency was 43.8%,and the power generation was better.Related experiments on actual sewage treatment were carried out.The total nitrogen removal rate of short-cut nitrification and denitrification in MFC cathode reached 81.93%,which is better than that of the whole process nitrification and denitrification.In microbial community of short-cut nitrification and denitrification,Betaproteobacteria and Thauera were effectively enriched,which is good for biological nitrogen removal.Besides,Nitrosomonas is the main nitrite-oxidizing bacteria.
作者 刘若男 赵博玮 岳秀萍 LIU Ruonan;ZHAO Bowei;YUE Xiuping(College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan,030000, Chin)
出处 《环境化学》 CAS CSCD 北大核心 2018年第6期1317-1326,共10页 Environmental Chemistry
基金 国家自然科学基金(21707099)资助~~
关键词 微生物燃料电池 曝气量 微氧 产电 脱氮 短程硝化反硝化 污水处理 microbial fuel cells aeration rate micro-aerobic electricity production nitrogenremoval short-cut nitrification and denitrification sewage disposal.
  • 相关文献

参考文献4

二级参考文献51

  • 1康峰,伍艳辉,李佟茗.生物燃料电池研究进展[J].电源技术,2004,28(11):723-727. 被引量:33
  • 2唐光临,孙国新,徐楚韶.亚硝化反硝化生物脱氮[J].工业水处理,2001,21(11):11-13. 被引量:19
  • 3胡颖华,孙丰霞,高廷耀,周增炎.活性污泥法污水厂剩余污泥微氧消化的中试研究[J].能源环境保护,2005,19(1):28-31. 被引量:2
  • 4董春娟,吕炳南,陈志强.微氧条件下厌氧颗粒污泥和消化污泥特性研究[J].南京理工大学学报,2005,29(2):216-218. 被引量:19
  • 5初里冰,张兴文,李晓惠,杨凤林,张金霞.微氧膜生物反应器同时去除有机物和氮的研究[J].环境污染治理技术与设备,2005,6(5):78-82. 被引量:12
  • 6Fu L, You S J, Zhang G Q,et al.Degradation of azo dyes using in-situ Fenton reaction incorporated into H202-pro- ducing microbial fuel cell[J]. Chemical Engineering Journal, 2010,160(1) : 164-169.
  • 7Rozendal R A, Hamelers H V M, Euverink G J W,et al. Principle and perspectives of hydrogen production through biocatalyzed electrolysis[J]. International Journal of Hydro- gen Energy, 2006,31( 12 ) : 1632-1640.
  • 8Cao X X, Huang X, Liang P,et al. A new method for wa- ter desalination using microbial desalination cells [J]. Envi- ronmental Science & Technology, 2009, 43 (18) : 7148- 7152.
  • 9Tender L M, Gray S A, Groveman E, et al. The first demonstration of a microbial fuel cell as a viable power supply :Powering a meteorological buoy[J]. Journal of Pow- er Sources, 2008,179(2) : 571-575.
  • 10Zhang F, Saito T, Cheng S,et al.Microbial fuel cell cath- odes with poly(dimethylsiloxane) diffusion layers construct- ed around stainless steel mesh current collectors[J]. Environ- mental Science & Technology, 2010,44(4) : 1490-1495.

共引文献81

同被引文献44

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部