摘要
针对变系数非线性偏微分方程的研究,提出了一种新的关于求解变系数非线性偏微分方程的守恒定律的方法;通过研究广义变系数Hirota-Satsuma方程组,运用李群分析法,求出了方程组的李点对称,并证明这个方程组是非线性伴随的,也就是Ibragimov定理,从而构建了一般的守恒定律公式;运用Hirota-Satsuma方程组的等价变换,即增广空间上的一个非退化点变换,从而得到方程组的等价代数;由于广义变系数Hirota-Satsuma方程组的守恒定律公式中含有任意元素,所以方程组中含有无穷个守恒定律。
With respect to the study of nonlinear partial differential equations( PDEs) with variable coefficients,a new method for solving the conservation laws of nonlinear PDEs is proposed. By studying the generalized Hirota-Satsuma equations with variable coefficients,we use Lie group analysis method to get the Lie point symmetries,and prove that the system is nonlinearly self-adjoint,namely Ibragimov's theorem,thus construct the general conservation law formula. Then its equivalence transformation which is a nondegenerate point transformation is used in the augmented space to obtain the equivalence algebras. Since the conservation law formula involves in any arbitrary elements,we can draw an infinite number of the conservation laws.
作者
程爱芳
陆斌
CHENG Ai-fang;LU Bin(School of Mathematical Sciences, Anhui University, Hefei 230601, China)
出处
《重庆工商大学学报(自然科学版)》
2018年第4期1-6,共6页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
国家自然科学基金(11471015
11571016)
安徽大学大学生科研训练项目(J18520104)
关键词
等价变换
李对称
非线性伴随
守恒定律
equivalence transformation
Lie symmetry
nonlinear self-adjiontness
conservation law