期刊文献+

下保护罩对PMT水下内爆载荷特性传播影响的数值研究 被引量:3

Numerical Study on Influence of Protective Shield in PMT Under Water Implosion Load Peculiarity Propagation Property
下载PDF
导出
摘要 考虑PMT内爆后会引起临近PMT产生连锁爆炸,以江门中微子实验中心的PMT为研究对象,通过数值计算方法研究了PMT内爆后的载荷特性,探讨了下保护罩对PMT内爆载荷特性的影响。结果表明:PMT内爆产生的压力峰值和比冲量均在传播方向呈现幂函数形式衰减,PMT内爆冲击波向Z-方向传播的冲击波强度最大;存在下保护罩的PMT内爆产生的压力峰值和比冲量在Z+方向、Z+X+方向、Z-X+方向传播时均呈现幂函数形式衰减,而在Z-方向传播时,压力峰值呈现指数形式增加,比冲量呈现线性增加;下保护罩的存在能够很好降低PMT内爆后产生的压力峰值,延迟压力峰值出现时间,但下保护罩内爆后的比冲量与无下保护罩PMT内爆后比冲量相当。 Considering PMT underwater imposion may conduce the chain explode of near PMT,we study the PMT in Jiangmen neutrino center detector structure,using numerical simulation method research the load peculiarity of PMT underwater implosion. We also study the protective shield influence on the load peculiarity of PMT explode. Result shows the peak pressure and impluse decrease in the model of power function in the propagate direction. The most strength explosive shock wave is in the direction of Z-. The shock wave strength of PMT with protective shield decrease in the model of power function in the propagate direction of Z+,Z+X+and Z-X+. However,the PMT with protective shield peak pressure shows the model of exponent increase and the impulse shows linear increase. The protective shield can decrease the peak pressure and delay the appear time of peak pressure. But it has little influence in the impulse.
作者 王天穹 方志威 侯海量 金键 吴林杰 李茂 WANG Tianqiong;FANG Zhiwei;HOU Hailiang;JIN Jian;WU Linjie;LI Mao(College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China;The No. 91189^th Troop of PLA, Lianyungang 222041, China)
出处 《兵器装备工程学报》 CAS 北大核心 2018年第6期41-47,共7页 Journal of Ordnance Equipment Engineering
基金 国家安全重大基础研究项目(613305) 国家自然科学基金资助项目(51679246,51409253)
关键词 PMT 水下内爆 下保护罩 载荷特性 数值研究 PMT underwater implosion protective shield load peculiarity numerical study
  • 相关文献

参考文献2

二级参考文献20

  • 1An F P, Bai J Z, Balantekin A B, et al. [Daya Bay collaboration] Observation of electron-antineutrino disappearance at Daya Bay. Phys Rev Lett, 2012, 108:171803.
  • 2Cho A. Crash project opens a door in neutrino physics. Science, 2012, 338:1527.
  • 3Zhan L, Wang Y F, Cao J, et al. Determination of the neutrino mass hierarchy at an intermediate baseline. Phys Rev D, 2008, 78:111103.
  • 4Zhan L, Wang Y F, Cao J, et al. Experimental requirements to determine the neutrino mass hierarchy using reactor neutrinos. Phys Rev D, 2009, 79:073007.
  • 5Athanassopoulos C, Auerbach L B, Bauer D, et al. Candidate events in a search for anti-muon-neutrino → anti-electron-neutrino oscillations. Phys Rev Lett, 1995, 75:2650-2653.
  • 6Aguilar-Arevalo A A, Bazarko A O, Brice S J, et al. [MiniBooNE Collaboration] Search for electron neutrino appearance at the Delta m21 eV2 scale. Phys Rev Lett, 2007, 98:231801.
  • 7Apollonio I, Baldini A, Bemporad C, et al. Limits on neutrino oscillations from the CHOOZ experiment. Phys Lett B, 1999, 466:415-430.
  • 8Boehm F, Busenitz J, Cook B, et al. Search for neutrino oscillations at the Palo Verde nuclear reactors. Phys Rev Lett, 2000, 84:3764-3767.
  • 9Mikaelyan L, Sinev V. Neutrino oscillations at reactors: What next? Phys Atom Nucl, 2000, 63:1002-1006.
  • 10An F P, An Q, Bai J Z, et al. A side-by-side comparison of Daya Bay antineutrino detectors. Nucl Instr Meth A, 2012, 685:78-97.

共引文献30

同被引文献5

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部