期刊文献+

锂离子电池模型参数辨识方法和放电模拟 被引量:9

Parameters Identification of Lithium-Ion Batterie Model and Simulation of the Discharge Voltage Curves
下载PDF
导出
摘要 针对锂离子电池准二维模型提出一种基于启发式算法的P2D模型参数辨识方法,该算法包括:减少P2D模型待辨识参数数量、利用参数有效区间减少遗传算法搜索时间和分治策略,将P2D模型参数分成两组并利用遗传算法分别进行辨识。通过启发式算法,利用单核计算机可以在十个小时以内辨识出锂离子电池P2D模型的所有参数,基于辨识值的模拟电压曲线与实验电压曲线吻合较好。基于模型辨识的电池放电电压模拟方法,不仅为精确估计锂离子电池内部状态以及剩余容量提供理论支持,而且为安全、可靠使用锂离子电池提供数据支撑。 A more efficient parameter identification method based on the heuristic algorithm is introduced to get parameters of pseudo-two-dimensional( P2 D) model of lithium-ion batteries. The heuristic algorithm includes features such as the requirement of fewer identified parameters and the effective interval spacing of parameters to save searching time during the genetic algorithm. This algorithm also uses a divide-andconquer strategy that divides the full set of P2 D model parameters into two groups and identifies each group,respectively. With this method,the complete identification of P2 D model parameters can be performed within 10 h using a single core computer. Simulated data using the above identified parameters are consistent with the experimenttal results. This method provides theoretic support to estimate the inner state and the residual capacity of LIBs,and it also offers data for safely and securely using lithium-ion batteries.
作者 葛亚明 李军 GE Yaming;LI Jun(Experiment and Innovation Center, Harbin Institute of Technology ( Shenzhen), Shenzhen 518055, China;School of Intelligent Systems Engineering, Sun YaT-Sen University, Shenzhen 518119, China)
出处 《兵器装备工程学报》 CAS 北大核心 2018年第6期188-191,共4页 Journal of Ordnance Equipment Engineering
基金 863计划先进能源课题(2013AA050902) 哈尔滨工业大学(深圳)教育教学改革研究项目(HITSZERP18006)
关键词 锂离子电池 模拟计算 P2D模型 参数辨识 lithium-ion battery simulation P2D model parameter identification
  • 相关文献

参考文献5

二级参考文献20

  • 1陈德钧.电池的近期发展与锂离子电池[J].电池,1996,26(3):139-143. 被引量:6
  • 2中国汽车技术研究中心,日产(中国)投资有限公司东风汽车有限公司.新能源汽车蓝皮书:中国新能源汽车产业发展报告(2013)[M].社会科学文献出版社,2013.
  • 3P.G.Bruce,B. Scrosati, J. M. Tarascon. Nanomaterials for Rechargeable Lithium Batteries[J]. Angewandte Chemie Intern- ational Edition. 2008, (47) : 2930-2946.
  • 4M. M. Yhackeray, A. Kock, W. David. Synthesis and Structural Characterization of Defect Spinels in the Lithium-manganese- oxide System[J]. Materials Research Bulletin. 1993, (28) : 1041- 1048.
  • 5G. G. Amatueci, N. Pereira, T. Zheng, L. Plitz, J. M. Tarascon. Enhancement of the Electrochemical Properties of LilMn204 through Chemical Substitution[J]. J. Power Sources. 1999, (81): 39-43.
  • 6. M. M. Thaekeray. An Unexpected Conductor [J]. Nature Materi- als. 2002, (1):81-82.
  • 7K. Zaghiba, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Manger, C. M. Julien. Safe and Fast-Charging Li-ion Battery with Long Shelf Life for Power Applieations [J]. Journal of Power Sources. 2011, (196): 3949-3954.
  • 8SHARKH A S, DOERFFEL D. Rapid Test and Non-linear Model Characterization of Solid-state Lithiumion Batteries [ J]. Journal of Power Sources ,2004(130) :266.
  • 9KHATEEB S A,FARID M M, SELMAN J R,et al. Mechan- ical Electrochemical Modeling of Li-ion Battery Designed for an Electric Scooter [ J ]. Journal of Power Sources,2006, 158( 1 ) :673-678.
  • 10SINGH P, FENNIE C, REISNER D. Fuzzy Logic Modeling of State-of-Charge and Available Capacity of Nickel/ Metal Hydride Batteries [ J ]. Journal of Power Sources, 2004,136 (2) :322-333.

共引文献12

同被引文献70

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部