摘要
Klinefelter syndrome (KS) is the set of symptoms that result from the presence of an extra X chromosome in males. Postnatal population-based KS screening will enable timely diagnosis of this common chromosomal disease, providing the opportunity for early intervention and therapy at the time point when they are most effective and may prevent later symptoms or complications. Therefore, through this study, we introduced a simple high-resolution melting (HRM) assay for KS screening and evaluated its clinical sensitivity and specificity in three medical centers using 1373 clinical blood samples. The HRM assay utilized a single primer pair to simultaneously amplify specific regions in zinc finger protein, X-linked (ZFX) and zinc finger protein, Y-linked (ZFY). In cases of KS, the ratios of ZFX/ZFYare altered compared to those in normal males. As a result, the specific melting profiles differ and can be differentiated during data analysis. This HRM assay displayed high analytical specificity over a wide range of template DNA amounts (5 ng-50 ng) and reproducibility, high resolution for detecting KS mosaicism, and high clinical sensitivity (100%) and specificity (98.1%). Moreover, the HRM assay was rapid (2 h per run), inexpensive (0.2 USD per sample), easy to perform and automatic, and compatible with both whole blood samples and dried blood spots. Therefore, this HRM assay is an ideal postnatal population-based KS screening tool that can be used for different age groups.
Klinefelter syndrome (KS) is the set of symptoms that result from the presence of an extra X chromosome in males. Postnatal population-based KS screening will enable timely diagnosis of this common chromosomal disease, providing the opportunity for early intervention and therapy at the time point when they are most effective and may prevent later symptoms or complications. Therefore, through this study, we introduced a simple high-resolution melting (HRM) assay for KS screening and evaluated its clinical sensitivity and specificity in three medical centers using 1373 clinical blood samples. The HRM assay utilized a single primer pair to simultaneously amplify specific regions in zinc finger protein, X-linked (ZFX) and zinc finger protein, Y-linked (ZFY). In cases of KS, the ratios of ZFX/ZFYare altered compared to those in normal males. As a result, the specific melting profiles differ and can be differentiated during data analysis. This HRM assay displayed high analytical specificity over a wide range of template DNA amounts (5 ng-50 ng) and reproducibility, high resolution for detecting KS mosaicism, and high clinical sensitivity (100%) and specificity (98.1%). Moreover, the HRM assay was rapid (2 h per run), inexpensive (0.2 USD per sample), easy to perform and automatic, and compatible with both whole blood samples and dried blood spots. Therefore, this HRM assay is an ideal postnatal population-based KS screening tool that can be used for different age groups.