期刊文献+

一种基于自相关函数特征的行为识别方法 被引量:2

Action recognition method based on features of autocorrelation function
下载PDF
导出
摘要 为了增强特征敏感度,提高人体日常行为识别准确率,针对行为识别特征进行了研究,提出一种基于自相关函数特征的人体行为识别方法。首先对预先采集的人体行为数据进行预处理,然后从时域和频域提取特征后计算得到自相关函数特征,同时采取互相关函数的步进式方法在自相关函数上进行降噪操作。分别使用C4.5决策树、K最近邻、支持向量机、朴素贝叶斯四种分类器进行分类。实验结果表明,与选取纯粹的时、频域特征集进行识别分类的模型相比,选用了包含自相关函数特征的特征集构造出来的模型对行为的识别准确率有较大提高。 In order to enhance feature sensitivity and improve recognition accuracy of human daily actions,this paper researched the features of activity recognition,and presented a human action recognition method based on the autocorrelation function features. The method preprocessed the pre-collected human action data firstly,and then calculated to obtain features of the autocorrelation function after extracting features from the time domain and the frequency domain,and at the same time,it performed noise reduction operations on the autocorrelation function by using a step-by-step method of the cross-correlation function. It separately performed classification by using four classifiers including C4. 5 decision tree,K-nearest neighbor( KNN),support vector machine( SVM),and naive Bayesian. Experimental results show that,compared with the model recognized and classified by selecting pure time domain and frequency domain feature sets,the model constructed by using feature sets including the features of the autocorrelation function greatly improves actions recognition accuracy.
作者 王忠民 李杨 张荣 Wang Zhongmin;Li Yang;Zhang Rong(School of Computer Science & Technology,Xi ' an University of Posts & Telecommunications,Xi ' an 710061,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第6期1696-1699,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61373116) 陕西省科技统筹创新工程计划项目(2016KTZDGY04-01) 陕西省教育厅资助项目(15JK1653)
关键词 行为识别 自相关函数特征 特征提取 特征敏感度 action recognition features of autocorrelation function feature extraction feature sensitivity
  • 相关文献

参考文献4

二级参考文献49

  • 1焦蓬蓬,沈廷根,宋雪桦,吴斌.一种典型的语音端点检测方法的研究[J].微计算机信息,2008(4):217-218. 被引量:3
  • 2Ailisto H,Lindholm M,Mantyjarvi J,et al. Identifying users of portable devices from gait pattern with accelerometers [ A ]. IEEE International Conference on Acoustics, Speech, and Signal Processing[ C ]. Philadelphia: IEEE Signal Processing Society, 2005.Ⅱ. 973 - 976.
  • 3Gafurov Davrondzhon, Helkala Kirsi, Sondrol Torkjel. Gait recognition using acceleration from MEMS[ A]. Proceedings of the 1^st Intemational Conference on Availability, Reliability and Security[ C]. Vienna: Imtitute of Electrical and Electronics Engineers Computer Society,2006.432 - 437.
  • 4Mathie M J,CeUer B G,Lovell Nigel H,et al. Classification of basic daily movements using a lriaxial accelerometer[ J] .Medical and Biological Engineering and Computing, 2004, 42 ( 5 ) : 679 - 687.
  • 5D M Karantonis,M R Narayanan, M Mathie, et al. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring[ J]. IEEE Transactions on Information Technology in Biomedicine, 2006, 10( 1 ) : 156 - 167.
  • 6N Ravi,N Dandekar,P Mysore, et al.Activity recognition from accelerometer data[ A ]. Proceedings of the 20^th National Conference on Artificial Intelligence[ C ]. Pittsburgh: American Association for Artificial Intelligence,2005. V3. 1541 - 1546.
  • 7Ohtaki Y, Susumago M, Suzuki A, et al. Automatic classification of ambulatory movements and evaluation of energy consumptions u utilizing accelerometers and a barometer [ J ]. Microsystem Technologies, 2005,11 (8 - 10 ) : 1034 - 1040.
  • 8Masakatsu Kourogi, Takeshi Kurata. Personal positioning based on walking locomotion analysis with self-contained sensors and a wearable camera[ A]. Proceedings of the 2^nd IEEE and ACM International Symposium on Mixed and Augmented Reality [ C]. Tokyo: IEEE Computer Society ,2003. 103 - 112.
  • 9M J Mathie. Monitoring and Interpreting Human Movement Patterns Using a Triaxial Accelerometer [D]. Sydney, Australia: University of New South Wales,2003.
  • 10Chen Yen-Ping,Yang Jhun-Ying,Liou Shun-Nan,et al.Online Classifier Construction Algorithm for Human Activity Detection U-sing a Tri-Axial Accelerometer[J].Applied Mathematics and Computation,2008,205(2):849 -860.

共引文献55

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部