期刊文献+

利用傅里叶谐波分析法的时序数据周期迭代辨识算法 被引量:2

Iterative identification algorithm for periodic component of time series data using Fourier analysis method
下载PDF
导出
摘要 针对现有的时序数据其周期辨识算法存在着辨识精度低及计算成本高的问题,在傅里叶谐波分析法的基础上,提出了一种具有基频迭代机制的周期辨识算法。首先,利用方差分析法从原始序列中析出其周期长度的整型估算值;然后,以任意小的频率间隔在估算值区间内进行傅里叶谐波的迭代拟合;最后,基于最小拟合残差和的准则来确定最优的周期成分。实验表明,该算法不仅具有良好的计算效能,而且还能精确地辨识出与序列样本长度无关的周期成分。 In view of the existing time series data,the algorithm of periodic identification has the problems of low identification accuracy and high computational cost,on the basis of Fourier harmonic analysis,this paper proposed a periodic identification algorithm with fundamental frequency iteration mechanism. First of all,it used the method of analysis of variance from the original sequence in the precipitation period length integer estimation. Then,to the frequency interval arbitrarily small in the estimated value of iterative fitting,interval Fourier harmonic. Finally,to determine the optimal cycle components based on the criterion of minimum fitting error. The experimental results show that the algorithm not only has good computational efficiency,but also can identify the periodic components independent of the sample length accurately.
作者 黄雄波 胡永健 Huang Xiongbo;Hu Yongjian(Dept.of Electronic & Information Engineering,Foshan Professional Technical College,Foshan guangdong 528000,China;School of Electronic & Information Engineering,South China University of Technology,Guangzhou 510641,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第6期1716-1719,共4页 Application Research of Computers
基金 广东省自然科学基金团队项目(9351064101000003) 广东省应用型科技研发专项基金资助项目(2015B010130003) 广东省科技计划工业攻关项目(2011B010200031) 佛山职业技术学院横向重点资助项目(H201815)
关键词 时序数据 周期成分 迭代辨识 傅里叶谐波分析法 方差分析法 time series data periodic component identification of the iteration Fourier analysis method variance analysis
  • 相关文献

参考文献9

二级参考文献39

  • 1肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:59
  • 2关积珍.城市道路交通流的宏观特性及规律分析[J].交通运输系统工程与信息,2005,5(1):47-52. 被引量:10
  • 3陈安龙,唐常杰,元昌安,彭京,胡建军.挖掘多数据流的异步偶合模式的抗噪声算法[J].软件学报,2006,17(8):1753-1763. 被引量:6
  • 4Tang L,Cui B,Li H,et al.Effective variation management for pseudo periodical streams[C] //Proc of the ACM SIGMOD Conf on Management of Data.New York:ACM,2007:257-268.
  • 5Joseph V,Pe M.Clinical information systems and the electronic medical record in the intensive care unit[J].Current Option in Critical Care,2002,8(6):616-624.
  • 6Ishiguro M,Suzuki H,Murase I,et al.Internet threat detection system using Bayesian estimation[C/OL] //Proc of the 16th Annual FIRST Conf on Computer Security Incident Handling.2004[2009-01-06].Http://www.mri.co.jp/PUBLICITY/PAPER/2004/20040620_si302.pdf.
  • 7Berndt D J,Clifford J.Using dynamic time warping to find patterns in time series[C] //Proc of the AAAI Workshop on Knowledge Discovery in Databases.Menlo Park,CA:AAAI,1994:359-370.
  • 8Athitsos V,Papapetrou P,Potamias M,et al.Approximate embedding-based subsequence matching of time series[C] //Proc of the ACM SIGMOD Int Conf on Management of Data.New York:ACM,2008:365-378.
  • 9Vlachos M,Yu P S,Castelli V.On periodicity detection and structural periodic similarity[C] //Proc of the SIAM Int Conf on Data Mining (SDM).Philadelphia,PA:SIAM,2005:449-460.
  • 10Vlachos M,Meek C,Vagena Z,et al.Identifying similarities,periodicities and bursts for online search queries[C] //Proc of the ACM SIGMOD Int Conf on Management of Data.New York:ACM,2004:131-142.

共引文献55

同被引文献34

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部