期刊文献+

离散多智能体切换系统的二阶分组一致性研究 被引量:1

Second-order group consensus of discrete-time multi-agent systems with stochastic switching topologies
下载PDF
导出
摘要 针对随机切换拓扑条件下离散多智能体系统的二阶分组一致性问题进行了研究,设计了一种新颖的分组一致性协议。该协议不依赖于保守的假设条件,能全面反映系统中智能体在分组内与分组间的相互影响。基于矩阵理论和新协议,得到了在马尔可夫切换拓扑条件下,系统达到分组一致的充分条件。在证明过程的结尾部分,使用线性不等式(LMI)工具给出了获取协议中控制参数的算法。最后,通过数字仿真实例证明了理论结果的有效性。 This paper investigated the group consensus problems of second-order discrete-time multi-agent networks with fixed topology and stochastic switching topologies. Instead of relying on other conservative assumptions presented by the majority of the relevant existing research works,this paper presented a novel group consensus protocol which could exactly reflect the interactive influence among the agents of the multi-agent networks. It obtained the sufficient conditions of the group consensus by matrix theory and new protocol with Markov-switching topologies. Finally,it presented the LMI approach to the design of the group consensus protocol. Numerical simulations illustrate the results.
作者 徐云剑 彭世国 郭艾寅 Xu Yunjian;Peng Shiguo;Guo Aiyin(School of Automation,Guangdong University of Technology,Guangzhou 510006,China;School of Information Science & Engineering,Hunan International Economics University,Changsha 410205,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第6期1720-1723,1737,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61374081) 湖南省普通高等学校教学改革研究项目2015(291) 湖南省教育厅科学研究项目2014(14C0651)
关键词 分组一致 多智能体系统 马尔可夫切换 协调控制 group consensus muhi-agent system Markov-switching topology cooperative control
  • 相关文献

二级参考文献40

  • 1Cao J and Wang J 2005 IEEE Trans. Circ. Syst. I 52 920.
  • 2Cao J and Wang J 2005 IEEE Trans. Circ. Syst. I 52 417.
  • 3Chen T P 2001 Neural Netw. 14 977.
  • 4Liang J and Cao J 2003 Phys. Lett. A 318 53.
  • 5Zhang H 2007 IEEE Trans. Circ. Syst. II: Exp. Briefs 54 730.
  • 6Arik S 2002 IEEE Trans. Circ. Syst. I 49 1211.
  • 7Arik S and Tavsanoglu V 2000 IEEE Trans. Circ. Syst. I 47 571.
  • 8da Silva I N, Caradori W, do Amaral and de Arruda L V 2007 Appl. Math. Model. 31 78.
  • 9Qiu F, Cui B and Wu W Appl. Math. Model. in press.
  • 10Liao X F, Wang K W and Li C G 2004 Nonlinear Anal.: Real World Appl. 5 527.

共引文献10

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部