期刊文献+

基于共享矢量链的多任务概念漂移分类方法 被引量:3

Multi-task concept drift classification method based on shared vector chain
原文传递
导出
摘要 增强型时间自适应支持向量机在针对单一概念漂移问题时展现出了良好效果,但是无法协同求解多个概念漂移问题.然而,在很多应用场景中,有时会包含数个具有内在相关性的非静态数据集,它们各自的分类模型应充分考虑这种关联.为了反映出各概念漂移分类模型之间的相关部分,提出共享矢量链的概念,并开发面向多任务概念漂移问题的共享矢量链支持向量机(SVC-SVM).在模拟数据集及气体传感器阵列漂移数据集上的实验结果显示,协同求解多个具有相关性的概念漂移问题能够有效提升各自的泛化能力. The improved time adaptive supported vector machine performs well for a single concept drift problem in theoretical analysis and experimental studies, but cannot solve multiple concept drift problem. However, several parallel non-stationary datasets with inherent correlation are sometimes involved in many practical scenarios, whose respective classification models should take such cohesions into account. In this paper, the concept of shared supported vector chain is proposed to reflect the common vectors in each classification model for each nonstationary dataset and accordingly,a multi-task concept drift classification approach, called shared vector chain supported vector machines(SVC-SVM), is developed. Experimental results on synthetic datasets and gas sensor array drift dataset show the effectiveness of the proposed algorithm when solving several correlative concept drift problems together.
作者 史荧中 邓赵红 钱鹏江 王士同 SHI Ying-zhong;DENG Zhao-hong;QIAN Peng-jiang;WANG Shi-tong(School of Digital Media, Jiangnan University, Wuxi 214122, China;School oflnternet of Things, Wuxi Institute of Technology, Wuxi 214121, China;Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi214122, China)
出处 《控制与决策》 EI CSCD 北大核心 2018年第7期1215-1222,共8页 Control and Decision
基金 国家自然科学基金项目(61572236 61300151) 江苏省产学研前瞻性研究项目(BY2016023-01)
关键词 多任务 概念漂移 支持向量机 共享矢量链 multi task: concept drift supported vector machine share vector chain
  • 相关文献

参考文献3

二级参考文献52

  • 1Domingos P, Hulten G. Mining high-speed data streams[C]. Proc of ACM Sigkdd Int Conf Knowledge Discovery in Databases. Boston: ACM Press, 2000: 71-80.
  • 2Hulten G, Spencer L, Domingos E Mining time-changing data streams[C]. Proc of ACM Sigkdd Int Conf Knowledge Discovery in Databases. San Francisco: ACM Press, 2001: 97-106.
  • 3Wang H, Fan W, Yu P, et al. Mining concept drifting data streams using ensemble classifiers[C]. The 9th ACM lnt Conf on Knowledge Discovery and Data Mining. Washington: ACM Press, 2003: 226-235.
  • 4Tom Mitchell. Machine learning[M]. McGraw Hill, 1997: 123_12~6.
  • 5Zico Kolter J, Marcus A Maloof. Dynamic weighted majority: An ensemble method for drifting concepts[J]. J of Machine Learning Research, 2007, 8(8): 2755-2790.
  • 6Li C Q, L!ng T W, Hu M. Efficient processing of updates in dynamic XML data[C]. Proc of the 22nd Int Conf on Data Engineering. Washington DC: IEEE Computer Society, 2006: 13-22.
  • 7Li C Q, Ling T W, Hu M. Efficient updates in dynamic XML data: From binary string to quaternary string[J]. The Very Large Data Bases J, 2008, 17(3): 573-601.
  • 8Saerens M, Latinne P, Decaestecker C. Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure[J], Neural Computation, 2002, 14(1): 21- 41.
  • 9Yang C, Zhou J. Non-stationary data sequence classification using online class priors estimation[J]. Pattern Recognition, 2008, 41 (8): 2656-2664.
  • 10Zhang Zhi-hao, Zhou Jie. Transfer estimation of evolving class priors in stream data classification[J]. Pattern Recognition, 2010, 43(9): 3151-3161.

共引文献21

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部