摘要
高铁齿轮箱体的服役环境恶劣,疲劳和拉伸损伤同时存在,服役周期长,缺少故障损伤数据.为此,针对高铁齿轮箱体的服役特点和安全性需求,采用基于性能退化方法,利用声发射技术对箱体损伤过程进行监测,并提出一种利用Adaboost调整样本分布的方法建立退化模型来表征箱体损伤状态.通过对箱体损伤过程的声发射信号进行分析,实现箱体的有效故障诊断,将箱体拉伸损伤故障诊断的绝对误差控制在30 s以内,疲劳损伤故障诊断的相对误差基本控制在1.1%以内.依据不同损伤原理,所得结果能够有效进行箱体故障诊断.
The service environment of the high speed gear-box shell is bad, fatigue and tensile damage exist at the same time, the service cycle is long, and the fault damage data is insufficient. Therefore, according to the service characteristics and safety requirements of the high speed gear-box shell, based on the performance degradation method, the acoustic emission technique is used to monitor the damage process of the gear-box shell. A method using the Adaboost algorithm to adjust the distribution of samples is proposed to establish the degradation model, which can characterize the damage state of the gear-box shell. By analyzing the acoustic emission signal of the damage process, the effective fault diagnosis of the box is realized. The absolute error of the tensile damage diagnosis of the shell is less than 30 s, and the relative error of fatigue damage diagnosis is less than 1.1%. On the basis of the different damage principle, the results can effectively achieve the gear-box shell fault diagnose.
作者
艾轶博
孙畅
张卫冬
AI Yi-bo;SUN Chang;ZHANG Wei-dong(National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China)
出处
《控制与决策》
EI
CSCD
北大核心
2018年第7期1264-1270,共7页
Control and Decision
基金
国家自然科学基金项目(61273205)
关键词
故障诊断
ADABOOST算法
样本分布
性能退化
材料表征
高铁齿轮箱
fault diagnosis
Adaboost algorithm
sample distribution
performance degradation
material characterization
high speed gear-box