摘要
在统计过程控制中,为了利用专家信息减少不确定性,并在控制图模型中将不同属性的专家先验信息结合起来综合利用,提出一种新的广义标准灰数概念,将不同属性的专家信息结合在同一个空间上,用统一架构进行表征,并提出新的运算法则来计算这些多源异构的专家灰信息.结合经典贝叶斯理论,在灰数据背景下对统计质量控制图模型进行参数估计,并利用累积样本信息对参数进行迭代优化,使灰色区域不断收敛,降低不确定性.实例分析结果表明,这种灰贝叶斯迭代优化模型可以在小样本贫信息的情况下减少监测数据的异常波动,更准确地利用专家信息进行预警,并在样本累积过程中逐步偏重于实际数据,得到符合新样本信息的参数.
In the statistical process control, in order to make use of expert information to reduce uncertainty, and to make comprehensive use of the prior information of different attributes in the control charts model, a new concept of general standard grey number is proposed to combine all these expert information and transform them into one space. Besides,a mathematical framework is established to characterize the information, and new rules of operation are proposed to calculate the multi-source heterogeneous grey information. Then, based on the classic Bayesian theory, parameters of the statistical quality control chart are estimated under the background of grey information, and cumulative sample data is used to optimize the parameters in an iterative approach, while expert grey information degenerating with data accumulation. The result shows that this model is able to reduce abnormal fluctuation and false alert, and gradually relies more on actual data.
作者
蒋子涵
方志耕
张秦
李维东
杨晓钰
JIANG Zi-han;FANG Zhi-geng;ZHANG Qin;LI Wei-dong;YANG Xiao-yu(College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 China;Institute for Grey Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
出处
《控制与决策》
EI
CSCD
北大核心
2018年第7期1287-1294,共8页
Control and Decision
基金
国家自然科学基金项目(71671091)
中央高校基本科研业务费专项资金项目(NP2015208)
国家社科基金重点项目(12AZD102)
关键词
统计过程控制
多源异构信息
广义区间灰数
贝叶斯迭代优化
质量控制图
statistical process control
multi-source heterogeneous information
general interval grey number
Bayesianiterative optimization
control charts