期刊文献+

A vicinal effect for promoting catalysis of Pd1/TiO2:supports of atomically dispersed catalysts play more roles than simply serving as ligands 被引量:15

A vicinal effect for promoting catalysis of Pd_1/TiO_2: supports of atomically dispersed catalysts play more roles than simply serving as ligands
原文传递
导出
摘要 Atomically dispersing metal atoms on supports has been emerging as an effective strategy to maximize the atom utilization of metals for catalysis. However, due to the lack of effective tools to characterize the detailed structure of metal-support interface, the chemical functions of supports in atomically dispersed metal catalysts are hardly elucidated at the molecular level. In this work, an atomically dispersed Pdl/ Ti02 catalyst with Ti(III) vicinal to Pd is prepared and used to demonstrate the direct involvement of metal atoms on support in the catalysis of dispersed metal atoms. Systematic studies reveal that the Ti (IlI)-O-Pd interface facilitates the activation of 02 into superoxide (02), thus promoting the catalytic oxi- dation. The catalyst exhibits the highest CO turn-over frequency among ever-reported Pd-based catalysts, and enhanced catalysis in the combustion of harmful volatile organic compound (i.e., toluene) and green- house gas (i.e., methane). The demonstrated direct involvement of metal atoms on oxide support suggests that the real active sites of atomically dispersed metal catalysts can be far beyond isolated metal atoms themselves. Metal atoms on oxide supports in the vicinity serve as another vector to promote the catalysis of atomically dispersed metal catalysts. Atomically dispersing metal atoms on supports has been emerging as an effective strategy to maximize the atom utilization of metals for catalysis. However, due to the lack of effective tools to characterize the detailed structure of metal-support interface, the chemical functions of supports in atomically dispersed metal catalysts are hardly elucidated at the molecular level. In this work, an atomically dispersed Pd_1/TiO_2 catalyst with Ti(Ⅲ) vicinal to Pd is prepared and used to demonstrate the direct involvement of metal atoms on support in the catalysis of dispersed metal atoms. Systematic studies reveal that the Ti(Ⅲ)-O-Pd interface facilitates the activation of O_2 into superoxide(O_2^-), thus promoting the catalytic oxidation. The catalyst exhibits the highest CO turn-over frequency among ever-reported Pd-based catalysts,and enhanced catalysis in the combustion of harmful volatile organic compound(i.e., toluene) and greenhouse gas(i.e., methane). The demonstrated direct involvement of metal atoms on oxide support suggests that the real active sites of atomically dispersed metal catalysts can be far beyond isolated metal atoms themselves. Metal atoms on oxide supports in the vicinity serve as another vector to promote the catalysis of atomically dispersed metal catalysts.
出处 《Science Bulletin》 SCIE EI CSCD 2018年第11期675-682,共8页 科学通报(英文版)
基金 supported by the National Key Research and Development Program of China(2017YFA0207302) the National Natural Science Foundation of China(21731005,21420102001,21373167,and 21573178) the National Postdoctoral Program for Innovative Talents(BX201600093) the China Postdoctoral Science Foundation Project(2017M610392)
关键词 Support effect Ligand effect Single-atom catalyst Oxidation reaction Superoxide 金属催化剂 金属原子 催化作用 TiO2 有机化合物 Pdl 有效工具 回转频率
  • 相关文献

参考文献6

二级参考文献71

  • 1Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688-1691.
  • 2Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252-255.
  • 3Judai, K.; Abbet, S.; Worz, A. S.; Heiz, U.; Henry, C. R. Low-temperature cluster catalysis. J. Am. Chem. Soc. 2004, 126, 2732-2737.
  • 4Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 2008, 321, 1331-1335.
  • 5Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981-983.
  • 6Vajda, S.; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213-216.
  • 7Haruta, M. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75-87.
  • 8Remediakis, I. N.; Lopez, N.; Norskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 1824-1826.
  • 9Yang, X.-F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in hetero- geneous catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.
  • 10Ouyang, R. H.; Liu, J.-X.; Li, W.-X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2012, 135, 1760-1771.

共引文献67

同被引文献102

引证文献15

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部