摘要
The dextran sulfate sodium (DSS)-induced colitis model is a widely applied mouse model, but controversial results have been obtained from experiments using the same mouse strain under the same conditions. Because the gut microbiota play an important role in DSS-induced colitis, it is essential to evaluate the influence of the initial gut microbiota in this model. Here, we identified significant variations in the initial gut microbiota of different batches of mice and found that the initial intestinal microbiota had a profound influence on DSS-induced colitis. We performed three independent trials using the same C57BL/6J mouse model with DSS treatment and used high-throughput 16S rRNA gene sequencing to analyze the gut microbiota. We found that the structure and composition of the gut microbiota in mice with severe colitis, as compared with mice with milder colon damage, had unique features, such as an increase in Akkermansia bacteria and a decrease in Barnesiella spp. Moreover, these varied gut bacteria in the different trials also showed different responses to DSS treatment. Our work suggests that, in studies using mouse models, the gut microbiota must be considered when examining mechanisms of diseases, to ensure that comparable results are obtained.
The dextran sulfate sodium (DSS)-induced colitis model is a widely applied mouse model, but controversial results have been obtained from experiments using the same mouse strain under the same conditions. Because the gut microbiota play an important role in DSS-induced colitis, it is essential to evaluate the influence of the initial gut microbiota in this model. Here, we identified significant variations in the initial gut microbiota of different batches of mice and found that the initial intestinal microbiota had a profound influence on DSS-induced colitis. We performed three independent trials using the same C57BL/6J mouse model with DSS treatment and used high-throughput 16S rRNA gene sequencing to analyze the gut microbiota. We found that the structure and composition of the gut microbiota in mice with severe colitis, as compared with mice with milder colon damage, had unique features, such as an increase in Akkermansia bacteria and a decrease in Barnesiella spp. Moreover, these varied gut bacteria in the different trials also showed different responses to DSS treatment. Our work suggests that, in studies using mouse models, the gut microbiota must be considered when examining mechanisms of diseases, to ensure that comparable results are obtained.
基金
supported by the National Natural Science Foundation of China(81401141)
Science and Technology Commission of Shanghai Municipality(14YF1402200)