摘要
Cubic metal-covalent-supramolecular organic framework(MCSOF-1)hybrid has been created from the reaction of two molecular components and subsequent co-assembly with cucurbit[8]uril(CB[8])in water.In the presence of CB[8],[Ru(bpy)_3]^(2+)-based acylhydrazine 1·2Cl reacted with aldehyde 2·Cl to quantitatively yield six-armed precursor 3·8Cl through the generation of MCSOF-1.MCSOF-1 combines the structural features of metal-,covalent-and supramolecular organic frameworks.Its periodicity in water and in the solid state was confirmed by synchrotron X-ray scattering and diffraction experiments.MCSOF-1could enrich discrete anionic polyoxometalates(POMs),maintain periodicity in acidic medium,and remarkably facilitate visible light-induced electron transfer from its[Ru(bpy)_3]^(2+)units to enriched POMs,leading to enhanced catalysis of the POMs for the reduction of proton to H_2in both aqueous(homogeneous)and organic(heterogeneous)media.
Cubic metal-covalent-supramolecular organic framework(MCSOF-1)hybrid has been created from the reaction of two molecular components and subsequent co-assembly with cucurbit[8]uril(CB[8])in water.In the presence of CB[8],[Ru(bpy)3](2+)-based acylhydrazine 1·2Cl reacted with aldehyde 2·Cl to quantitatively yield six-armed precursor 3·8Cl through the generation of MCSOF-1.MCSOF-1 combines the structural features of metal-,covalent-and supramolecular organic frameworks.Its periodicity in water and in the solid state was confirmed by synchrotron X-ray scattering and diffraction experiments.MCSOF-1could enrich discrete anionic polyoxometalates(POMs),maintain periodicity in acidic medium,and remarkably facilitate visible light-induced electron transfer from its[Ru(bpy)3](2+)units to enriched POMs,leading to enhanced catalysis of the POMs for the reduction of proton to H2in both aqueous(homogeneous)and organic(heterogeneous)media.
基金
supported by the National Natural Science Foundation of China (21529201, 21432004, 91527301)
the Molecular Foundry, Lawrence Berkeley National Laboratory, and the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy (DE-AC02- 05CH11231)