期刊文献+

SOC在线估计误差修正算法研究 被引量:4

Research on error correction algorithm of SOC online estimation
下载PDF
导出
摘要 针对荷电状态(SOC)在线估计精度不高的问题,以磷酸铁锂(Li Fe PO4)锂离子电池为对象,研究环境温度、循环次数和放电电流等因素对电池容量的影响。提出一种误差修正方法,利用开路电压结合BP神经网络估计初始SOC,利用安时积分估计动态SOC。这种方法将SOC的估计精度控制在2%以内,可用于电池管理系统中在线估计SOC。 According to the problem of low precision in state of charge ( SOC ) estimation, the influence of ambient temperature, cycle numbers and discharge current on the capacity of the lithium iron phosphate ( LiFePO4 ) Li-ion battery was studied. A error correction algorithm for SOC estimation was proposed, which was estimate the initial SOC by the combination of open circuit voltage and BP neural network and the dynamics of SOC by Ampere-hour integral. This method could control the precise of SOC estimation within 2% and this algorithm could be applied to battery management system for SOC online estimation.
作者 潘莹 朱武 张佳民 PAN Ying;ZHU Wu;ZHANG Jia-min(Electronic and Information Engineering College, Shanghai University of Electric Power, Shanghai 200090, China;Automation Engineering College, Shanghai University of Electric Power, Shanghai 200090, China)
出处 《电池》 CAS CSCD 北大核心 2018年第3期163-166,共4页 Battery Bimonthly
基金 上海市地方能力建设项目(15110500900) 上海市教委科研创新重点项目(11ZZ173)
关键词 荷电状态(SOC) 误差修正 BP神经网络 开路电压 安时积分 锂离子电池 state of charge (SOC) error correction BP neural network open circuit voltage ampere-hour integral Li-ion battery
  • 相关文献

参考文献2

二级参考文献9

共引文献159

同被引文献36

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部