摘要
给出了求最短路线问题的直接解法,利用矩阵的循环移位变换,构造集合的笛卡儿积,把所有可能的路线看成是始点集合与终点集合的笛卡儿积的子集.把距离定义为笛卡儿积上的函数,结合Matlab软件,列出由始点到终点的所有路线,并计算出对应的距离,进而求出最短路线和最短距离.所给程序可以作为模型推广应用到同类问题的求解中.
This paper presents a direct solution for problems of the shortest path, using cyclic shift transformation of matrices, construct the cartesian product of given sets, take the set of all possible routes as a subset of the cartesian product of starting points sets and end points se, the distance is defined as the function of this cartesian product, combined with the Matlab software, list all the routes from the starting point to the end point, then calculate the corresponding distances, finally find the shortest route and the shortest distance. The given programming can be applied in solving the same kind of problems.
作者
徐丽媛
段智力
张庆成
XU Li-yuan;DUAN Zhi-li;ZHANG Qing-cheng(Department of Mathematics and Statistics,Baicheng normal University,Baicheng 137000,China;School of Mathematics and Statistics,Northeast normal University,Changchun 130021,China)
出处
《数学的实践与认识》
北大核心
2018年第12期178-183,共6页
Mathematics in Practice and Theory
基金
吉林省教育厅高等教育教学改革研究重点课题:“问题驱动”的数学本科创新型人才培养模式研究
吉林省教育厅高等教育教学改革研究课题:高等院校转型背景下高等代数课程教学方法改革的研究(2016)
吉林省教育科学”十三五”规划2017重点课题项目(ZD17118)
关键词
动态规划
最短路线
笛卡儿积
循环移位变换
dynamic programming
the shortest path
cartesian product
cyclic shift transformation