摘要
为了研究对数核Toader平均Lr(a,b)在R(++)2上的Schur凸性和Schur几何凸性,利用控制不等式的相关理论得到结论:当r≥1/2时,Lr(a,b)在R(++)2上是Schur凹函数;当r≥0时,Lr(a,b)在R(++)2上是Schur几何凸函数;当r≤0时,Lr(a,b)在R(++)2上是Schur几何凹函数,最后,依据Lr(a,b)的Schur凸性和Schur几何凸性建立了新的不等式.
In order to research the Schur-convexity of Toader's mean Lr(a, b) with logrithmic kernel on R^2++, using the majorization theory we obtain that Lr(a, b) is Schur-concave function on R^2++ when r 〈 1 - 5, is Schur-geometric convex function on R2+ when r 〉 0, and is Schur- geometric concave function on R^2++ when r ≤ 0. Finally, new inequalities are established on the base of the Schur-convexity and Schur-geometric concavity of Lr (a, b).
作者
李明
单连峰
LIMing;SHAN Lian-feng(Deparment of Mathematics,School of Fundamental Sciences,China Medical University,Shenyang 110001 China)
出处
《数学的实践与认识》
北大核心
2018年第12期265-268,共4页
Mathematics in Practice and Theory