期刊文献+

对数核Toader平均的Schur凸性和Schur几何凸性

Schur-Convexity and Schur-Geometric Concavity of Toader’s Mean with Logrithmic Kernel
原文传递
导出
摘要 为了研究对数核Toader平均Lr(a,b)在R(++)2上的Schur凸性和Schur几何凸性,利用控制不等式的相关理论得到结论:当r≥1/2时,Lr(a,b)在R(++)2上是Schur凹函数;当r≥0时,Lr(a,b)在R(++)2上是Schur几何凸函数;当r≤0时,Lr(a,b)在R(++)2上是Schur几何凹函数,最后,依据Lr(a,b)的Schur凸性和Schur几何凸性建立了新的不等式. In order to research the Schur-convexity of Toader's mean Lr(a, b) with logrithmic kernel on R^2++, using the majorization theory we obtain that Lr(a, b) is Schur-concave function on R^2++ when r 〈 1 - 5, is Schur-geometric convex function on R2+ when r 〉 0, and is Schur- geometric concave function on R^2++ when r ≤ 0. Finally, new inequalities are established on the base of the Schur-convexity and Schur-geometric concavity of Lr (a, b).
作者 李明 单连峰 LIMing;SHAN Lian-feng(Deparment of Mathematics,School of Fundamental Sciences,China Medical University,Shenyang 110001 China)
出处 《数学的实践与认识》 北大核心 2018年第12期265-268,共4页 Mathematics in Practice and Theory
关键词 Toader平均 SCHUR凸性 Schur几何凸性 拉格朗日中值定理 Toader's mean Schur-convexity Schur-geometric concavity Lagrange meanvalue theorem
  • 相关文献

参考文献2

二级参考文献5

  • 1Alfred Witkowski. Covexity of weighted Stolarsky means[J]. J Inequal Pure Appl Math Vol. 7 Issue 2, Article 73, 2006 ,http ://jipam. vu. edu. au/.
  • 2Rajendra Bhatia, Hideki Kosaki. Mean matrices and infinite divisibility[J]. Linear Algebra and Its Applications, Volume 424, Issue 1,1,2007,36-54.
  • 3Gh. Toader. Some mean values related to the arithmetic-geometric mean[J]. J Math Anal Appl, 1998, 218(2): 358-368.
  • 4Marshall A W, and Olkin I. Inequalities: Theory of Majorization and Its Applications[M]. Academic Press, New York, 1979.
  • 5顾春,石焕南.Lehme平均的Schur凸性和Schur几何凸性[J].数学的实践与认识,2009,39(12):183-188. 被引量:7

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部