期刊文献+

椭圆曲线y^2=(x+2)(x^2-2x+43)的整数点 被引量:10

The Integral Points on the Elliptic Curve y^2=(x+2)(x^2-2x+43)
原文传递
导出
摘要 利用初等方法证明了椭圆曲线y^2=(x+2)(x^2-2x+43)仅有整数点(x,y)=(-2,0). Using elementary number theory methods, the elliptic curve in title has no positive integer points were proved.
作者 李玉龙 赵建红 万飞 LI Yu-longl;ZHAO Jian-hong;WAN Fei(College of Teacher Education,Honghe University,Mengzi 661199,China;College of Teacher Education,LiJiang Teachers College,Lijiang 664199,China)
出处 《数学的实践与认识》 北大核心 2018年第12期287-291,共5页 Mathematics in Practice and Theory
基金 云南省科技厅应用基础研究计划青年项目(2017FD166)
关键词 椭圆曲线 整数点 同余 LEGENDRE符号 elliptic curve integer point congruence Legendre symbol
  • 相关文献

参考文献4

二级参考文献18

  • 1Silverman J. H., The Arithmetic of Elliptic Curves, New York: Springer Verlag, 1999.
  • 2Zhu H. L., Chen J. H., A note on two diophantine equation y^2 = nx(x^2 ± 1), Acta Mathematica Sinica, Chinese Series, 2007, 50(5): 1071-1074.
  • 3Zagier D., Large integral point on elliptic curves, Math Comp., 1987, 48(177): 425-536.
  • 4Zhu H. L., Chen J. H., Integral points on y^2=x^3 + 27x - 62, J. Math. Study, 2009, 42(2): 117-125.
  • 5Min S. H., Yah S. J., Elementary Number Theory, Bcijing: Higher Education Press, 2003, 163-166.
  • 6Walsh G., A note on a theorem of Ljunggren and the diophantine equations x^2 - kxy^2 + y^4 = 1 or 4, Arch. Math., 1999, 73(2): 119-125.
  • 7Walker D. T., On the diophantine equation mX^2 - nY^2=1, Amer, Math. Monthly, 1967, 74(6): 504-513.
  • 8Zagier D. Lager integral point on elliptic curves [J]. MathComp,1987,48:425-436.
  • 9Zhu H L. Chen J H. Integral point on y2 — x3 27x~ 62[J]. J Math Study,2009,42(2) :117-125.
  • 10Wu H M. Points on the elliptic curves y2 = x3 +27x —62[J].J Acta Mathematica Sinica,2010,53(1) :205-208.

共引文献47

同被引文献24

引证文献10

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部