期刊文献+

基于超材料的太赫兹偏振器研究

Terahertz polarizer research based on metamaterials
下载PDF
导出
摘要 基于有限积分作为运算方式的三维全波仿真软件CST,设计太赫兹波段的非对称金属十字孔、金属开口圆环结构,通过引入偏振度与偏振转换效率来研究两种器件的偏振特性。基于偏振度的图像说明了当频率小于1.72THz时,所设计的偏振器件对Ex模式的入射电磁波有较好的透射特性,偏振度最大为70%;而当频率大于1.72THz时,器件对Ey模式的入射电磁波有较好的透射特性,偏振度约为32.5%。同样的金属开口环器件可以对平行入射的线偏振光进行有效的偏振态转换,并且偏振转换率最高能达到55%。研究结论为太赫兹传感器的研究提供参考。 Based on finite integral as the operation way of 3D full-wave simulation software CST,design the terahertz band asymmetric metal cross hole,metal opening ring structure. The degree of polarization and polarization conversion efficiency are introduced to study the polarization characteristics of the two kinds of devices. The polarizabilitybased images show that the polarization device has good transmission characteristics for incident electromagnetic waves in Ex mode at frequencies below 1.72 THz with a maximum polarization of 70%. When the frequency is greater than 1.72 THz,the polarization device has better transmission characteristics for incident electromagnetic waves in Ey mode,and the degree of polarization is about 32.5%. Meanwhile,the metal aperture ring device can lead to effective polarization state conversion for parallel incident linear polarized light,and the polarization conversion rate is up to 55%. The study provides a reference for the study of terahertz sensor.
作者 李爱云 刘凤收 韩超 杨其利 刘伟 LI Aiyun;LIU Fengshou;HAN Chao;YANG Qili;LIU Wei(Opto-Eleetronie Engineering College,Zaozhuang University,Zaozhuang Shandong 277160,China;Shandong Provinee Photoelectric Information Function and Display Key Laboratory,Zaozhuang Shandong 277160,China;Photoelectric Information Functional Materials with Wiener Device Key Laboratory of Zaozhuang,Zaozhuang Shandong 277160,China)
出处 《激光杂志》 北大核心 2018年第7期20-24,共5页 Laser Journal
基金 国家自然科学基金项目(No.61701434) 山东省自然科学基金面上项目(No.ZR201702200400) 山东省高等学校科技计划项目(No.J17KA087) 枣庄市科技成果转化及重点研发项目(No.2016GH19) 枣庄市科技计划项目(No.2016GX31)
关键词 太赫兹 偏振器 超材料 CST terahertz polarizer metamaterials CST
  • 相关文献

参考文献4

二级参考文献41

  • 1Sievenpiper D,Zhang L J,Broas R F J,Alex’opolous N G,Yablonovitch E.1999.IEEE Trans.Microw.Theory Tech.47 2059.
  • 2Pendry J B.2000.Phys.Rev.Lett.85 3966.
  • 3Schurig D,Mock J J,Justice B J,Cummer S A,Pendry J B,Starr A F,Smith D R.2006.Science 314 977.
  • 4李文强,曹祥玉,高军,刘涛,姚旭,马嘉俊.2012.物理学报 61 154102.
  • 5Landy N I,Sajuyigbe S,Mock J J,Smith D R,Padilla W J.2008.Phys.Rev.Lett.100 207402.
  • 6Huang L,Chowdhury D R,Ramani S,Reiten M T,Luo S N,Uaylor A J,Chen H T.2012.Opt.Lett.37 154.
  • 7Wang J,Chen Y T,Hao J M,Yan M,Qiu M.2011.J.Appl.Phys.109 074510.
  • 8Lin C H,Chern R L,Lin H Y.2011.Opt.Express 19 415.
  • 9刘涛,曹祥玉,高军,郑秋容,李文强.2012.物理学报 61 184101.
  • 10杨欢欢,曹祥玉,高军,刘涛,马嘉俊,姚旭,李文强.2013.物理学报 62 064103.

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部