期刊文献+

基于激光雷达的智能车SLAM系统 被引量:13

A SLAM system of intelligent vehicle based on laser radar
下载PDF
导出
摘要 为了使智能车在室外未知大范围环境中实现真正的自主导航,采用激光雷达传感器获取车辆周围环境信息,基于自适应渐消扩展卡尔曼滤波(AFEKF)和改进的快速联合兼容关联方法设计了一套同时定位与建图(SLAM)系统,简称为AFEKF-SLAM。首先,采用一种基于局部关联策略和聚类分组策略改进的快速联合兼容关联方法解决SLAM中的数据关联问题,为状态估计提供准确的量测-特征匹配关系;其次,采用自适应渐消扩展卡尔曼滤波对车辆状态和环境路标的位置进行估计。基于"Victoria dataset"的仿真实验表明,设计的SLAM系统实时性强,获得的定位和建图结果准确,能够为智能车在大范围环境自主导航提供可靠的保障。 In order to make the intelligent vehicle achieve autonomous navigation in a large outdoor environment,laser radar sensors are used to obtain the environmental information of around vehicle. A SLAM(simultaneous localization and mapping) system,called AFEKF-SLAM,is designed based on the adaptive fading extended Kalman filter(AFEKF) and an improved fast joint compatible association method. Firstly,an improved joint compatible association method based on local association strategy,and clustering strategy is applied to solve the problem of data association in SLAM to provide accurate matching relationship of measurement-feature for state estimation. Secondly,the adaptive fading extended Kalman filter is used to estimate vehicle state and the position of environmental features. Simulation experiments based on "Victoria dataset"shows that the designed SLAM system has strong real-time performance and accurate location and mapping results. It can provide a reliable guarantee for the autonomous navigation of the intelligent vehicle in a wide range of environment.
作者 刘丹 段建民 孟晓燕 LIU Dan;DUAN Jianmin;MENG Xiaoyan(Faeuhy of Information Technology,Beijing University of Technology,Beijing 100124,China)
出处 《激光杂志》 北大核心 2018年第7期76-82,共7页 Laser Journal
基金 北京市教委基金项目(No.JJ002790200802)
关键词 激光雷达 智能车 同时定位与建图 自适应渐消扩展卡尔曼滤波 快速联合兼容关联方法 laser radar intelligent vehicle SLAM AFEKF fast joint compatible association method
  • 相关文献

参考文献8

二级参考文献83

  • 1周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42
  • 2杨柏军,潘鸿飞,才晓峰.如何采用渐消卡尔曼滤波器防止捷联惯导系统滤波发散[J].微计算机信息,2005,21(4):13-14. 被引量:2
  • 3陈燕俐,洪龙,金达文,朱梧槚.一种简单有效的基于密度的聚类分析算法[J].南京邮电学院学报(自然科学版),2005,25(4):24-29. 被引量:8
  • 4顾柏园,王荣本,余天洪,郭烈.基于视觉的前方车辆探测技术研究方法综述[J].公路交通科技,2005,22(10):114-119. 被引量:14
  • 5SMITH R, SELF M, CHEESEMAN P. Estimating uncertain spatial relationships in robotics [ C ]. Proceedings of Conference on Uncertainty in Artificial Intelligence, Amsterdam: North-Holland, 1988:435-461.
  • 6ZHANG S, XIE L H, ADAMS M. An efficient data association approach to simultaneous localization and map building[ C]. IEEE International Conference on Robotics and Automation, 2004( 1 ) :854-859.
  • 7WIJESOMA W S, PERERA L D L, ADAMS M D. Toward multidimensional assignment data association in robot localization and mapping [ J ]. IEEE Transactions on Robotics, 2006,22(2) :350-365.
  • 8NEIRA J, TARDOS J D. Data association in stochastic mapping using the joint compatibility test [ J ]. IEEE Trans. Robot. Autom., 2001,17(6) :890-897.
  • 9GUIVANT J, NEBOT E M. Optimization of the simultaneous localization and map building algorithm for real time implementation [J]. IEEE Trans. Robot. Automat. , 2001,17:242-257.
  • 10BAR-SHALOM Y, FORTMANN T E. Tracking and data association[ M ]. Boston, MA :Academic, 1988.

共引文献65

同被引文献96

引证文献13

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部