期刊文献+

碳化硅MOSFET静态特征参数及寄生电容的高温特性研究 被引量:3

Study on High Temperature Characteristics of Static Characteristics and Parasitic Capacitances of Silicon Carbide MOSFET
下载PDF
导出
摘要 为了获取碳化硅(Si C)MOSFET功率器件静态特性及寄生电容随温度的变化规律,以Cree公司第二代1200V/36A碳化硅MOSFET为研究对象,利用Agilent B1505A功率器件分析仪/曲线追踪仪在不同温度下对器件的静态特性及寄生电容进行测量。并基于已有硅(Si)MOSFET的静态特性理论,结合碳化硅材料的温度特性,详细分析了碳化硅MOSFET静态特征参数的温度特性。研究结果表明碳化硅MOSFET的跨导具有与硅器件完全不同的温度特性,并且相比于第一代碳化硅MOSFET,第二代器件的泄漏电流表现出更低的温度依赖性。然而随着温度升高,第二代碳化硅MOSFET的导通电阻较第一代增长更快,但增长依旧远低于硅MOSFET。 In order to study how the static characteristics and parasitic capacitance of silicon carbide( Si C) MOSFET power devices vary with temperature,this paper chose the second-generation silicon carbide power MOSFET of Cree as the study object. The author measured its static characteristics and parasitic capacitance at different temperatures by using Agilent B1505 A power device analyzer/curve tracker. On the basis of the static characteristics theory of silicon( Si) MOSFETs and the temperature characteristics of silicon carbide materials,this paper analyzed the temperature characteristics of silicon carbide MOSFET's static parameters. The results showed that the temperature characteristics of the second-generation silicon carbide power MOSFET of Cree were completely different from that of silicon devices,and its leakage current presented lower temperature dependency than the first-generation. However,with the increase of temperature,the on-resistance of the second-generation silicon carbide MOSFET grew faster than the first-generation,while its growth was still much lower than silicon power MOSFET.
作者 徐鹏 柯俊吉 赵志斌 谢宗奎 魏昌俊 XU Peng;KE Junji;ZHAO Zhibin;XIE Zongkui;WEI Changjun(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China)
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2018年第4期17-24,共8页 Journal of North China Electric Power University:Natural Science Edition
基金 国家重点研发计划项目(2016YFB0400503)
关键词 碳化硅MOSFET 温度特性 理论分析 实验测量 silicon carbide MOSFET temperature characteristics theoretical analyses experimental measurement
  • 相关文献

参考文献4

二级参考文献35

  • 1Linewih H, Dimitrijev S and Kuan Y C 2003 Microelectronic Reliability 43 405.
  • 2Kumar A, Kaushik N, Haldar S, Gupta M and Gupta R S 2003 Microelectronic Engineering 65 416.
  • 3Amold E 1999 IEEE Trans. on Electron Devices 46 497.
  • 4Powell S K, Goldsman N, McGarrity J M and Bernstein J 2002 Journal of Applied Physics 92 4053.
  • 5Hasanuzzaman Md, Islam S K and Tolbert L M 2004 Solid-State Electronics 48 125.
  • 6Lu C Y et al 2003 IEEE Trans on Electron Devices 50 1582.
  • 7Harada S, Kosugi R, Senzaki J, Cho W J, Fukuda K and Arai K 2002 J. Appl. Phys. 91 1568.
  • 8Kosugi R, Suzuki S, Okamoto M, Harada S, Senzaki J and Fukuda K 2002 IEEE Electron Device Letters 23 136.
  • 9Roschke M and Schwierz F 2001 IEEE Trans. on Electron Devices 48 1442.
  • 10Vathulya V R and White M H 2000 IEEE Trans. on Electron Devices 47 2018.

共引文献84

同被引文献37

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部