期刊文献+

立方空心Ni(OH)_2的制备及其在AA电化学检测中的应用

Synthesis of Ni(OH)_2 cubic hollow architecture and their application in AA detection
下载PDF
导出
摘要 Ni(OH)_2作为过渡金属氢氧化物具有储量大,活性高和价格低廉等优点。根据动力学原理,空心结构具有较大的比表面积,良好的内部空间,丰富有序的传递通道,可以有效提高材料的电催化活性。以氧化亚铜为模板设计合成了立方空心Ni(OH)_2电催化材料,并将其用于抗坏血酸(AA)的电化学检测,结果表明立方空心Ni(OH)_2在检测AA的过程中有较高的灵敏度(1 678μA/(cm^2·mM)),较低的检测下限(0.25μM)和可靠的稳定性,证明了立方空心Ni(OH)_2在检测AA方面具有实际应用价值并且为构建高性能电催化剂提供了一种有效的策略。 As a transition metal hydroxide,Ni(OH)2 has the advantages of abundant reserves,low price and high catalytic performance.Inspired by kinetics,the hollow structure has a large specific surface area,good internal space and orderly passageway,which can effectively improve the electrocatalytic activity of the material.In this work,Ni(OH)2 cubic hollow architecture is constructed through coordinating etching and precipitating method.Ni(OH)2 electrode exhibits excellent electrocatalytic activity in terms of high sensitivity(1 678μA/(cm^2·mM)),the lower detection limit(0.25μM)and reliable stability.This work shows that the Ni(OH)2 of the hollow porous architecture has practical application for testing ascorbic acid.The construction provides an effective nanoengineering strategy for high-performance electrocatalysts.
作者 贺格格 田亮亮 李璐 HE Gege;TIAN Liangliang;LI Lu(Faculty of Materials and Energy,Southwest University,Chongqing 400715,China;Research Institute for New Materials Technology,Chongqing University of Arts and Sciences,Chongqing 402160,China)
出处 《功能材料》 EI CAS CSCD 北大核心 2018年第7期7156-7160,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(21403020 51503022) 重庆文理学院研究生资助项目(M2017ME20)
关键词 立方空心 NI(OH)2 电化学传感器 抗坏血酸 灵敏度 cubic hollow Ni(OH)2 electrochemical sensor ascorbic acid sensitivity
  • 相关文献

参考文献4

二级参考文献70

  • 1晁单明,陈靖禹,卢晓峰,陈梁,张万金.高分子量聚苯胺/碳纳米管复合材料的合成与表征[J].高等学校化学学报,2005,26(11):2176-2178. 被引量:18
  • 2童忠强,袁若,柴雅琴,陈时洪,张凌燕,谢轶.基于二氧化锆/纳米金溶胶凝胶膜固定辣根过氧化物酶的H_2O_2生物传感器的研制[J].西南师范大学学报(自然科学版),2006,31(5):102-106. 被引量:5
  • 3Liu X. X. , Zhang L. , Li Y. B, , Bian L. J. , Huo Y. Q. , Su Z.. Polym. Bull. [J], 2006, 57(6) : 825-832.
  • 4Hino T., Namiki T., Kuramoto N.. Synthetic Met. [J], 2006, 156(21-24) : 1327-1332.
  • 5Zeng F. W. , Liu X. X. , Diamond D. , Lau K. T.. Sens. Actuators B[J] , 2010, 143:530-534.
  • 6HuangJ. X., KanerR. B.. Chem. Commun.[J], 2006:367-376.
  • 7Chiou N. R. , Epstein A. J.. Adv. Mater. [J], 2005, 17(13) : 1679-1683.
  • 8Huang W. S. , Humphrey B. D. , Macdiarmid A. G.. J. Chem. Soc. , Faraday Trans. [J], 1986, 82:2385-2400.
  • 9DouY. Q., ZhaiY. P., LiuH. J., XiaY. Y., TUB., ZhaoD. Y., LiuX. X.. J. Power Sources[J], 2011, 196:1608-1614.
  • 10Sun Y. , Wilson S. R. , Schuster D. I.. J. Am. Chem. Soc. [J] , 2001, 123:5348-5349.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部