期刊文献+

基于边缘提取的非局部均值图像去噪 被引量:7

Non-local mean image denoising based on edge extraction
下载PDF
导出
摘要 图像去噪是图像处理和计算机视觉中的一个研究热点,其目的是从噪声图像中还原原始图像,且尽可能地保留更多的图像细节。非局部均值去噪算法(NLM)是近年来去噪效果比较出色的算法之一,但是传统的NLM算法在对边缘和纹理较丰富的图像进行去噪时,容易过平滑从而丢失很多细节信息。针对此问题,提出了一种基于边缘提取的NLM算法。该方法通过边缘提取,将图像边缘部分与平坦部分像素分开计算,减少不相似图像块之间的干扰,使得结构相似的邻域获得更大的权值,从而提高去噪效果的同时,保留更多的图像细节。实验结果表明:本文算法的去噪性能在主观评价和客观评价准则下都取得了较好的效果,去噪后的图像效果良好,且保留更多的细节。 Among image denoising is a hotspot in image processing and computer vision,with the aim of restoring the original image from the noise image and preserving as much detail as possible.Non-local mean denoising algorithm is one of the best algorithms for denoising in recent years.However,the traditional NLM algorithm is easy to smoothen the image when it is denoised at the edge and texture.Aiming at this problem,this paper proposes an NLM algorithm based on edge extraction.In this method,the edge of the image is separated from the flat part by the edge extraction,and the interference between the image blocks is reduced,so that the neighborhood of the similar structure can obtain more weight,so as to improve the denoising effect.More detail of the image.The experimental results show that the denoising performance of this algorithm has achieved better results under the subjective evaluation and objective evaluation criteria.The image after the denoising is good and retains more details.
作者 王思涛 金聪 Wang Sitao;Jin Cong(School of Computer,Central China Normal University,Wuhan 430079,Chin)
出处 《电子测量技术》 2018年第11期99-102,共4页 Electronic Measurement Technology
关键词 非局部均值 图像去噪 边缘提取 邻域权值 non-local means image denoising edge extraction neighborhood weight
  • 相关文献

参考文献10

二级参考文献108

  • 1付树军,阮秋琦,李玉,王文洽.基于各向异性扩散方程的超声图像去噪与边缘增强[J].电子学报,2005,33(7):1191-1195. 被引量:22
  • 2刘芳,刘文学,焦李成.基于复小波邻域隐马尔科夫模型的图像去噪[J].电子学报,2005,33(7):1284-1287. 被引量:13
  • 3刘晨,张东.边缘检测算子研究及其在医学图像中的应用[J].计算机技术与发展,2006,16(8):128-130. 被引量:14
  • 4洪俊田,陶剑锋,李刚,桂预风,徐晓英.基于灰色关联的数字图像去噪研究[J].武汉理工大学学报(交通科学与工程版),2006,30(4):639-641. 被引量:17
  • 5Eng H L, Ma K K. Noise adaptive soft-switching median filter for image denoising [ A ] . In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing [ C ], Istanbul, Turkey, 2000: 2175-2178.
  • 6Khryashchev V V, Apalkov I V, Priorov A L,et al. Image denoising using adaptive switching median filter [ A ]. In: Proceedings of IEEE International Conference on Image Processing [ C ] , Genova, Italy, 2005: 117-120.
  • 7Yang P, Basir O A. Adaptive weighted median filter using local entropy for ultrasonic image de-noising [ A ]. In: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis [ C] ,Rome, Italy, 2003: 799-803.
  • 8Chen Y, Han C. Adaptive wavelet threshold for image denoising [J]. Electronics Letters, 2005, 41(10) : 586-587.
  • 9Donoho D L. De-noising by soft-thresholding [ J]. IEEE Transactions on Information Theory, 1995, 41 (3) : 613-627.
  • 10Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [ J ]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.

共引文献257

同被引文献66

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部