期刊文献+

基于量子神经网络的平面变压器分布参数的预测方法 被引量:1

Estimation method of the distributing parameters for planar transformer based on quantum neural network
下载PDF
导出
摘要 平面变压器寄生参数的预测值是变压器结构设计以及电源产品环路稳定性分的重要依据。针对平面变压器的寄生参数与其结构、材料和工作状态之间的非线性关系,分析了已有寄生参数预测方法的特点和不足,提出了一种基于量子神经网络的平面变压器寄生参数预测方法,并使用36组平面变压器的结构参数和分布参数对神经网络模型进行了训练和验证。预测参数值与测试参数值吻合良好,平均误差在3%以下,最大误差在8%以下。最后,使用量子神经网络得出的预测模型,与使用传统的BP(误差反向传播)神经网络得出的模型进行对比,论证了量子神经网络在变压器分布参数预测上的优越性。 The prediction of distributing parameters is important for the design of the planar transformer and the power product loop stability analysis.Based on the nonlinear relationship between the parasitic parameters of planar transformer and its structure,material and working state,the characteristics and shortcomings of the existing parasitic parameter prediction methods are analyzed.A distributing parameters prediction model for the planar transformer,which is based on the quantum neural network(QNN),is proposed.36 groups of planar transformers' construction parameters and distributing parameters were used to train and verify the accuracy of the QNN prediction model.The predicted results obtained by the model are in good agreement with the measured ones at the average error less than 3%and maximum error less than 8%.Compared with the model obtained by BP(error back propagation)neural network,the superiority of the quantum neural network model in the prediction of transformer distribution parameters is demonstrated.
作者 刘雅琳 王刚 赵斌 Liu Yalinl';Wang Gang;Zhao Bin(Space Traveling-wave Tube Research Center,Institute of Electronics,Chinese Academy of Sciences,Beijing 100039,China;University of Chinese Academy of Science,Beijing 100039,China;Technical University of Denmark,Department of Electrical Engineering,Copenhagen 2800,Denmark)
出处 《国外电子测量技术》 2018年第6期26-30,共5页 Foreign Electronic Measurement Technology
关键词 平面变压器 寄生参数 量子神经网络 planar transformer quantum neural network distributing parameter prediction
  • 相关文献

参考文献5

二级参考文献36

  • 1张治国,杨毅恒,夏立显.RPROP算法在测井岩性识别中的应用[J].吉林大学学报(地球科学版),2005,35(3):389-393. 被引量:12
  • 2李建兵,牛忠霞,周东方,师宇杰.印制板平面变压器及其设计方法[J].电气应用,2006,25(2):50-54. 被引量:11
  • 3Duda R O, Hart P E, Stork D G. Pattern classification [ M ]. 2nd Edition. Beijing : China Machine Press, 2003.
  • 4Crocoll W M, Ellis N C, Simmons D B. Evaluating three types of artificial neural networks for classifying vehicles with multisensor data [ C ] // SPIE. [ S. l. ] : SPIE Press, 1997,3077,307 - 318.
  • 5Sehuhz A, Wechsler H. Data fusion in neural networks via computational evolution [ C ] //1994 IEEE International Conference on Neural Networks. [ S. l. ]: IEEE Press, 1994, 5 : 3044 - 3049.
  • 6Pandya A S, Macy R B. Pattern recognition with neural networks in C + + [ M]. Beijing: Publishing House of Electronics Industry, 1999.
  • 7Hagan M T, Demuth H B, Beale M H. Neural network design[ M]. Beijing:China Machine Press, 2002.
  • 8Riedmiller M, Braun H. A direct adaptive method for faster backpropagation learning: The RPROP Algorithm [ C ] // IEEE Conf. on NN [ S. l. ] :IEEE Press, 1993, 1 : 586 - 591.
  • 9Haylin S. Neural Networks:A comprehensive foundation [ M]. 2nd Edition. Beijing: Tsinghua University Press & Prentice House, 2001.
  • 10Karayiannis N B,Xiong Yao-hua.Training reformulated radial basis function neural networks capable of identifying uncertainty in data classification[J].IEEE Transactions on Neural Networks, 2006,17 (5) : 1222-1234.

共引文献49

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部