期刊文献+

Enhancing the Performance of JADE Using Two-phase Parameter Control Scheme and Its Application 被引量:1

Enhancing the Performance of JADE Using Two-phase Parameter Control Scheme and Its Application
原文传递
导出
摘要 The search efficiency of differential evolution (DE) algorithm is greatly impacted by its control parameters. Although many adaptation/self-adaptation techniques can automatically find suitable control parameters for the DE, most techniques are based on pop- ulation information which may be misleading in solving complex optimization problems. Therefore, a self-adaptive DE (i.e., JADE) using two-phase parameter control scheme (TPC-JADE) is proposed to enhance the performance of DE in the current study. In the TPC-JADE, an adaptation technique is utilized to generate the control parameters in the early population evolution, and a well-known empirical guideline is used to update the control parameters in the later evolution stages. The TPC-JADE is compared with four state-of-the-art DE variants on two famous test suites (i.e., IEEE CEC2005 and IEEE CEC2015). Results indicate that the overall performance of the TPC-JADE is better than that of the other compared algorithms. In addition, the proposed algorithm is utilized to obtain optimal nutrient and inducer feeding for the Lee-Ramirez bioreactor. Experimental results show that the TPC-JADE can perform well on an actual dynamic optimization problem. The search efficiency of differential evolution (DE) algorithm is greatly impacted by its control parameters. Although many adaptation/self-adaptation techniques can automatically find suitable control parameters for the DE, most techniques are based on pop- ulation information which may be misleading in solving complex optimization problems. Therefore, a self-adaptive DE (i.e., JADE) using two-phase parameter control scheme (TPC-JADE) is proposed to enhance the performance of DE in the current study. In the TPC-JADE, an adaptation technique is utilized to generate the control parameters in the early population evolution, and a well-known empirical guideline is used to update the control parameters in the later evolution stages. The TPC-JADE is compared with four state-of-the-art DE variants on two famous test suites (i.e., IEEE CEC2005 and IEEE CEC2015). Results indicate that the overall performance of the TPC-JADE is better than that of the other compared algorithms. In addition, the proposed algorithm is utilized to obtain optimal nutrient and inducer feeding for the Lee-Ramirez bioreactor. Experimental results show that the TPC-JADE can perform well on an actual dynamic optimization problem.
出处 《International Journal of Automation and computing》 EI CSCD 2018年第4期462-473,共12页 国际自动化与计算杂志(英文版)
基金 supported by National Natural Science Foundation of China(Nos.61603244 and 41505001) Fundamental Research Funds for the Central Universities(No.222201717006)
关键词 Differential evolution(DE)algorithm evolutionary computation dynamic optimization control parameter adaptation chemical processes. Differential evolution(DE)algorithm evolutionary computation dynamic optimization control parameter adaptation chemical processes.
  • 相关文献

二级参考文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部