期刊文献+

基于知识图谱的bug问题探索性搜索方法 被引量:8

Construct Knowledge Graph for Exploratory Bug Issue Searching
下载PDF
导出
摘要 软件bug问题在软件开发与维护过程中不可避免.然而软件历史库中的bug库与commit库之间没有直接的对应关系,并且随着bug信息、commit提交信息量的增长,搜索bug变得更加繁琐.本文提出一种基于知识图谱对bug问题进行探索性搜索的方法.通过建立bug报告、commit提交信息及相关人员(如:bug报告人、commit提交者等)信息的bug知识图谱,并结合探索性搜索的思想,不仅能准确搜索bug问题,还能提供相关辅助信息对bug问题进行探索性搜索,帮助软件开发人员更有效地理解和解决bug问题. Software bug issues are inevitable in software development and maintenance. However,there are no corresponding relationships between bugs and commits in software repository. Moreover,with the increasing amount of bug reports and commit information,bug search in the software repository becomes more difficult and costly. In this paper,we propose an exploratory search approach to search bug issues based on knowledge graph. By building the bug knowledge graph of bug reports,commits and related developers( such as bug reporters,committers and so on) and combining with the idea of exploratory search,our approach can not only help software developers search bug issues accurately,but also provide the relevant information to explore bug issues,thus software developers can understand and resolve bug issues more effectively.
作者 孙小兵 王璐 王经纬 李斌 李宇 SUN Xiao-bing;WANG Lu;WANG Jing-wei;LI Bin;LI Yu(School of Information Engineering,Yangzhou University,Yangzhou,Jiangsu 225127,China;State Key Laboratory for Novel Software Techtuglogy,Nanjing University,Nanjing,Jiangsu 210023,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第7期1578-1583,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61402396 No.61472344) 南京大学计算机软件新技术国家重点实验室开放基金(No.KFKT2016B21) 江苏青蓝工程 大学生创新创业训练计划(No.201611117024Z) 扬州市自然科学基金-面上项目(No.YZ2017113)
关键词 bug报告 commit提交 知识图谱 探索性搜索 bug report commit knowledge graph exploratory search
  • 相关文献

参考文献6

二级参考文献34

  • 1李素建,王厚峰,俞士汶,辛乘胜.关键词自动标引的最大熵模型应用研究[J].计算机学报,2004,27(9):1192-1197. 被引量:92
  • 2眭跃飞,高颖,曹存根.NKI中的本体、框架和逻辑理论(英文)[J].软件学报,2005,16(12):2045-2053. 被引量:7
  • 3王海涛,曹存根,高颖.基于领域本体的半结构化文本知识自动获取方法的设计和实现[J].计算机学报,2005,28(12):2010-2018. 被引量:31
  • 4Yih W, Goodman J, Carvalho V R. Finding advertising keywords on Web pages [C]//Proc of WWW'06. New York: ACM, 2006:213-222.
  • 5Kelleher D, I.uz S. Automatic hypertext kcyphrase detection [C] //Proc of IJCAI-05. San Francisco: Morgan Kaufmann, 2005:1608-1609.
  • 6Turney P D. Coherent keyphrase extraction via web mining [C]//Proc of IJCAI 03. San Francisco: Morgan Kaufmann, 2003:434-439.
  • 7Hulth A. Improved automatic keyword extraction given more linguistic knowledge[C] //Proc of EMNLP'03. Stroudsburg: ACL, 2003:216-223.
  • 8A1 Khalifa H S, Davis H C. Folksonomies versus automatic keyword extraction: An empirical study [C]//Proc of IAD1S Web Applications and Research 2006. Southampton: ECS, 2006: 132-143.
  • 9Mihaleea R, Tarau P. TextRank.- Bringing order into texts [C] //ProeofEMNLP'04. Stroudsburg: ACL, 2004:404 - 411.
  • 10Wan Xiaojun, Yang Jianwu, Xiao Jianguo. Towards an iterative reinforcement approach for simultaneous document summarization and keyword extraction[C] //Proe of ACL'07. Stroudsburg: ACL, 2007: 552-559.

共引文献146

同被引文献39

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部