期刊文献+

Thermally stable photoluminescence and long persistent luminescence of Ca3Ga4O9:Tb^3+/Zn^2+ 被引量:4

Thermally stable photoluminescence and long persistent luminescence of Ca_3Ga_4O_9:Tb^(3+)/Zn^(2+)
原文传递
导出
摘要 A green long persistent luminescence(LPL) phosphor Ca3Ga4O9:Tb3+/Zn2+ was prepared. Ca3 Ga4 O9 matrix exhibits blue self-activated LPL due to the creation of intrinsic traps. When Tb3+ is doped, the photoluminescence(PL) and LPL colors change from blue to green with their intensities significantly enhanced. The doping of Zn^(2+) evidently improves the PL and LPL performances of the Ca3Ga4O9 matrix and Ca3Ga4O9:Tb^(3+). The thermoluminescence(TL) spectra show that a successive trap distribution is formed by multiple intrinsic traps with different depths in the Ca3 Ga4 O9 matrix, and the incorporation of Tb^(3+) and Zn^(2+) effectively increases the densities of these intrinsic traps. The existence of a successive trap distribution makes the Ca3 Ga4 O9:Tb^(3+)/Zn^(2+) phosphor exhibit thermally stable PL and LPL, It is indicated that this phosphor shows great promise for the application such as high-temperature LPL phosphor. A green long persistent luminescence(LPL) phosphor Ca3Ga4O9:Tb3+/Zn2+ was prepared. Ca3 Ga4 O9 matrix exhibits blue self-activated LPL due to the creation of intrinsic traps. When Tb3+ is doped, the photoluminescence(PL) and LPL colors change from blue to green with their intensities significantly enhanced. The doping of Zn^(2+) evidently improves the PL and LPL performances of the Ca3Ga4O9 matrix and Ca3Ga4O9:Tb^(3+). The thermoluminescence(TL) spectra show that a successive trap distribution is formed by multiple intrinsic traps with different depths in the Ca3 Ga4 O9 matrix, and the incorporation of Tb^(3+) and Zn^(2+) effectively increases the densities of these intrinsic traps. The existence of a successive trap distribution makes the Ca3 Ga4 O9:Tb^(3+)/Zn^(2+) phosphor exhibit thermally stable PL and LPL, It is indicated that this phosphor shows great promise for the application such as high-temperature LPL phosphor.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第7期675-679,共5页 稀土学报(英文版)
基金 supported by the National Natural Science Foundation of China(11774138) the Society Development Foundation of Yunnan Province(2016FA021) the Kunming University of Science and Technology(KKSY201632046)
关键词 Self-activated Long persistent luminescence Successive trap distribution Thermal stability Rare earths Self-activated Long persistent luminescence Successive trap distribution Thermal stability Rare earths
  • 相关文献

二级参考文献5

共引文献8

同被引文献10

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部