摘要
基于粒子群优化(PSO)的增强型核极限学习机(KELM)提出了一种有效的预测模型PSO-KELM来辅助第二专业选择。在PSO-KELM中,PSO策略确定KELM的最佳参数。PSO-KELM与其他两个竞争方法在学生专业选择数据上通过10折交叉验证方案进行比较,这两个方法分别是支持向量机和网格搜索技术优化的KELM。结果表明了本文预测模型在分类精度、受试者工作特征曲线面积(AUC)、灵敏度和特异性方面的优越性。
This paper proposes an effective prediction model for choosing the second major based on the Particle Swarm Optimization(PSO)enhanced Kernel Extreme Learning Machine(KELM),which is called PSO-KELM model.In this model,the PSO strategy is adopted to adaptively determine the optimal parameters in KELM.The PSO-KELM model is compared with other two competitive methods,including Support Vector Machine(SVM)and a KELM is optimized by grid search technique,on a major selection dataset via a 10-fold cross validation scheme.The results clearly confirm the superiority of the proposed PSO-KELM model in classification accuracy,area under the receiver operating characteristic curve(AUC),sensitivity and specificity.
作者
黄辉
冯西安
魏燕
许驰
陈慧灵
HUANG Hui;FENG Xi-an;WEI Yan;XU Chi;CHEN Hui-ling(School of Marine Science and Technology,Northwestern Pol ytechnical University,Xilan 710072,China;College of Mathematics,Physics and Electronic Information Engineering,Wenzhou University,Wenzhou 325035,China;Wenzhou Vocational College of Science and Technology,Wenzhou 325006,China)
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2018年第4期1224-1230,共7页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金项目(61101155)
浙江省自然科学基金项目(LY15F020033)
温州市科技计划项目(2016R0002)
浙江省教育厅科学研究基金项目(Y201533884)
浙江省科技计划项目(2014C32031)
关键词
计算机应用
核极限学习机
粒子群优化
第二专业选择
computer application
kernel extreme learning machine
particle swarm optimization
second major selection