期刊文献+

基于Corr-LDA模型的图像标注方法 被引量:3

Image annotation method based on Corr-LDA model
下载PDF
导出
摘要 针对现有图像标注方法大多将不同类别的图像置于同一主题空间下进行标注的不足,提出了一种新的图像标注方法,该方法以Corr-LDA模型为基础,将各类图像置于不同主题空间下,并为每个类别学习出适合该类的图像标注模型。在Labelme及UIUC-Sport数据集上的实验结果表明,本文方法的标注性能要优于其他方法。 Most of existing image annotation methods are based on the same topic space.In fact,categories are important information to determine the image annotation words,different classifications of images present different objects.In this paper,a new image annotation method based on Corr-LDA model is proposed.In this method all sorts of images are placed in different topic spaces,and the image annotation model suitable to each category is learned.Experiment results on Labelme and UIUC-Sport datasets show that the proposed method has better performance than other methods.
作者 曹洁 苏哲 李晓旭 CAO Jie;SU Zhe;LI Xiao-xu(School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China;School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第4期1237-1243,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61563030)
关键词 计算机应用 图像标注 概率主题模型 变分EM Corr-LDA模型 computer application image annotation probabilistic topic model variational expectation maximization Corr-LDA model
  • 相关文献

参考文献2

二级参考文献38

  • 1Cusano C, Ciocca G, Sehettini R. Image annotation using SVM [C] ff Proc. of Int. SPIE Conf. on Imaging IV. San Jose, CA, USA, Feb. 2004 : 330-338.
  • 2Lu Zhi-wu, Horace H S I, He Qi-zhen. Context-based multi-label image annotation [C]//Proceeding of the ACM International Conference on Image and Video Retrieval. Santorini, Fira, Greece, July 2009.
  • 3Maron O, Lozano-Perez T. Multiple-instance learning for natural scene elassification[C] // Proe. of Int. Conf. on Machine Learning (ICML'98). Madison,Wisconsin,USA,July 1998..341-349.
  • 4Yang C, Dong M, Fotouhi F. Region-based image annotation through multiple instance learning[C] //Proc, of ACM Conf. on Multimedia (ACM MM'05). Singapore,Nov. 2005:435 438.
  • 5Yang C, Dong M, Hua J. Region-based image annotation using asymmetrical support vector machine-based multiple-instance learning[C]//Proc, of IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR' 06). New York, USA, June 2006 : 2057 2063.
  • 6Gustavo C, Nuno V. A database centric view of semantic image annotation and retrieval[C]//Proc, of Int. ACM SIGIR Conf. on Retrieval (ACM SIGIR~05). Salvador,Brazil, Aug. 2005:559-566.
  • 7Carneiro G, Chan A B, Moreno P J, et al. Supervised learning of semantic classes for image annotation and retrieval [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29 (3) :394-410.
  • 8Qi X, Han Y. Incorporating multiple SVMs for automatic image annotation[J]. Pattern Recognition, 2007,40 (2) : 728-741.
  • 9Tang J H, Hua X, Qi G, et al. Typicality ranking via semi-super- vised multiple-instance leaming[C] // Proc. of ACM Conf. on Multimedia ( ACM MM ' 07 ). Augsburg, Germany, Sep. 2007 : 297-300.
  • 10Feng Song-he, Xu De. Transductive Multi-Instance Multi-Label Learning Algorithm with Application to Automatic Image An- notation[J]. Expert Systems with Applications, 2010,37 (1): 661-670.

共引文献65

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部