摘要
提出一种基于小波包和径向基函数神经网络(RBF神经网络)的高-中压燃气调压器故障诊断智能化的方法。调压器出口压力信号通过小波包分解为能量信号,将能量信号和燃气调压器的稳压精度相结合构建RBF神经网络的输入特征向量,通过分析RBF神经网络的输出向量实现高-中压燃气调压器故障类型的智能诊断。
An intelligent fault diagnosis method for high-medium pressure gas regulators based on wavelet packet and radial basis function (RBF) neural network is proposed. The outlet pressure signal of the regulator is decomposed into energy signals by the wavelet packet, and the input feature vector of the RBF neural network is constructed by combining the energy signal with the pressure stabilizing precision of the gas regulator. The intelligent diagnosis of fault types of high-medium pressure gas regulators is realized by analyzing the output vector of the RBF neural network.
作者
刘力宁
郝学军
刘旭海
LIU Lining;HAO Xuejun;LIU Xuhai
出处
《煤气与热力》
2018年第7期36-39,43,共5页
Gas & Heat
关键词
小波包
RBF神经网络
燃气调压器
稳压精度
故障智能诊断
work
gas pressure precision
intelligent wavelet packet
RBF neural netregulator
pressure stabilization diagnosis of faults