期刊文献+

英语自动作文评分系统实现路径探析 被引量:1

Probe into the implementation path of English automatic composition scoring system
下载PDF
导出
摘要 英语自动作文评分系统不仅能节约大量人力、物力和财力,还对提高英语学习者英语写作水平起到非常重要的作用。本文系统分析了当下四种实现自动作文评分系统的路径,它们分别为基于非文本相关特征、基于文本相关特征、基于概率统计分类方法和基于深度神经网络的自动作文评分系统。依据分析结果,提出未来英语自动作文评分系统的主要发展方向是融合四种实现路径的优点、优化作文数据特征维度和提升作文练习的有效反馈能力。 The automatic English composition scoring system not only saves a lot of manpower, material and financial resources, but also plays an important role in improving the English writing level of English learners. This paper systematically analyzes the current four paths for implementing automatic composition scoring system. They are based on non-text related features, text-based features, probabilistic statistical classification methods and automatic composition scoring system based on deep neural network. According to the analysis results, the main development direction of the future automatic English composition scoring system is to combine the advantages of the four realization paths, optimize the feature dimension of the composition data and improve the effective feedback ability of the composition exercise.
作者 夏林中 罗德安 张春晓 张卫丰 XIA Linzhong;LUO Dean;ZHANG Chunxiao;ZHANG Weifeng(School of Electronics and Communication,Shenzhen Institute of Information Technology,Shenzhen,Guangdong 518172,P.R.China)
出处 《深圳信息职业技术学院学报》 2018年第2期18-23,共6页 Journal of Shenzhen Institute of Information Technology
基金 深圳信息职业技术学院科研项目(PT201701) 深圳市科技计划创客专项项目(GRCK2017042409560810) 深圳市科技计划创客专项项目(GRCK2017042409552883) 深圳市科技计划项目(JCYJ20160527101807403) 深圳市科技计划项目(JCYJ20140418100633638)
关键词 自然语言处理 自动作文评分 深度神经网络 概率统计 natural language processing automatic composition scoring deep neural networks probability statistics
  • 相关文献

参考文献4

二级参考文献38

  • 1符祝芹.在线英语写作自动评价系统在英语写作教学中的应用实证研究[J].牡丹江教育学院学报,2012(4):114-115. 被引量:12
  • 2吴会芹.用现代化手段辅助语言测试[J].外语电化教学,2006(3):49-53. 被引量:5
  • 3Burstein, J. The E-rater scoring engine: Automated essay scoring with natural language processing [ C ] // M. D. Shermis & J. Burstein. Automated Essay Scoring: A Crossdisciplinary Perspective. Mahwah, NJ: Lawrence Erlbaum Associates, 2003 : 113 - 122.
  • 4Burstein, J. & M. Chodorow. Automated essay scoring for nonnative English speakers [ Z/OL]. ( 1999 - 06 ) [ 2006 - 03 - 20 ]. http: //www. ets. org/Media/Research/pdf/ erater_ ac199rev, pdf.
  • 5Dildi, S. Automated Essay Scoring [ J ]. Turkish Online Journal of Distance Education, 2006, 7 ( 1 ) : 49 - 62.
  • 6Elliot, S. IntelliMetric : from here to validity [ C ] //M. D. Shermis & J. Burstein. Automated Essay Scoring: A Cross Disciplinary Perspective. Mahwah, NJ: Lawrence Erlbaum Associates, 2003:71 -86.
  • 7Hearst, M. The debate on automated essay grading [ J ]. IEEE Intelligent Systems, 2000, 15 : 22 - 37.
  • 8Kukich, K. Beyond Automated Essay Scoring [ J]. IEEE Intelligent Systems, 2000, (5) : 27 -31.
  • 9Landauer, T. K. , D. Laham & P. W. Foltz. Automated Essay Scoring and Annotation of Essays with the Intelligent Essay Assessor [ C ] // M. D. Shermis & J. Burstein. Automated Essay Scoring: A Cross-disciplinary Perspective. Mahwah, NJ: Lawrence Erlbaum Associates, 2003:87 - 112.
  • 10Larkey, L. S. & W. B. Croft. A Text Categorization Approach to Automated Essay Grading [ C ] // M. D. Shermis & J. Burstein. Automated Essay Scoring: A Crossdisciplinary Perspective. Mahwah, NJ: Lawrence Erlbaum Associates, 2003 : 55 - 70.

共引文献101

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部